
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

Master Thesis in Statistics
Nikolaj Theodor Thams

Causal Structure Learning in Multivariate
Point Processes

Abstract

In this thesis, we consider the problem of learning the causal structure of a multivariate

point process through constrained-based learning. We introduce temporal point processes

and study local independence graphs as a means of describing the local independence

structure of a stochastic process. Our main contribution is a non-parametric test for local

independence in multivariate point processes. The test uses higher-order interactions be-

tween process events to approximate the intensity, an approximation we show to converge

under regularity assumptions. We discuss the computational challenge of the proposed

test, and evaluate the performance in simulation studies.

Advisor: Niels Richard Hansen

July 18, 2019



Table of Contents

1 Introduction 1

2 A primer in Causal Inference 4
2.1 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Structure learning . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Causality in dynamical systems . . . . . . . . . . . . . . . . . . . 8

3 Graph theory and Markov properties 10
3.1 Elementary graph theory . . . . . . . . . . . . . . . . . . . . . . 10
3.2 µ-separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Markov properties . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 CA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Point Processes 20
4.1 Random measures . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Some martingale theory . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Hawkes processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Marked Point Processes . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Intensity Expansion 34
5.1 Density in L1(F) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 The integral representation of λ . . . . . . . . . . . . . . . . . . . 36
5.3 Representations on (−∞, t] . . . . . . . . . . . . . . . . . . . . . 40
5.4 Extension to Marked Point Processes . . . . . . . . . . . . . . . . 41

6 Local Independence 43

7 A Local Empirical Independence Test 46
7.1 Approximating the intensity . . . . . . . . . . . . . . . . . . . . . 46
7.2 Estimating λ through maximum likelihood . . . . . . . . . . . . . 48
7.3 Distributions of maximum likelihood estimates . . . . . . . . . . 49
7.4 Testing additive components to 0 . . . . . . . . . . . . . . . . . . 51

8 Computational cost 54

9 Experimental results 57
9.1 Experiment 1: Choice of κ0 and accuracy of test . . . . . . . . . 57
9.2 Experiment 2: Performance in the Empirical Causal Analysis

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3 Experiment 3: The latent case . . . . . . . . . . . . . . . . . . . 61

10 Discussion 63

ii



References 64

A Enumerations and integrals 66

B Tensor splines 67

C Implementing integration of 2nd order effects 70

iii



1 Introduction

In this thesis, we develop causal methods for point processes. As a motivation,
consider the data set in Figure 1a, where 5 different types of events are observed
in an interval [0, T ], each tick representing an individual event. One could
imagine this to be 5 different neurons spiking, companies in 5 different markets
defaulting or the use of 5 different words in social media posts. The data is
a realization of a counting process, a stochastic process modelling repeated
observations of events over time.

In what way did events trigger further events? Clearly there is some depen-
dence between points: While the events of N1 are rather uniformly spread out
across the interval, events of N3 clearly exhibit a clustering. Also, what would
happen, if we intervened in the system, say by blocking events from occurring
in N5?

|| | | | | | | | | | | | | | | | | | | | | | | || | | | | |
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Figure 1: (a): A simulated data set from a 5-dimensional point process. Each
tick represents one point in a coordinate process. (b): Local independence graph
of the underlying process.

These questions call for a causal model. A causal model not only fits the
joint distribution of the data, but also fits a causal structure, which one assumes
entails the right predictions under interventions to the system.

One characterization of causal models builds on local independence. Roughly,
we say that the coordinate process N b is locally independent of Na given NC ,
if Na does not affect the rate of occurrence of events in N b, once the events of
NC are already known, and in that case we write a 6→ b | C.

From this we could draw a graph, with each node corresponding to a coordi-
nate process, and draw an edge a→ b, whenever Na affects N b, even when we
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are given all other coordinates. We call this the local independence graph,
and it is an important characterization of a causal model.

Figure 1b shows the local indepence graph of the underlying process that
generated the data set in Figure 1a. Indeed we observe several arrows into 3 and
none into 1, which supports our observations about the respective clustering and
non-clustering of the two. The local independence graph is a simple object, and
does not contain the sign nor size of the effect mediated through an arrow. Yet,
it illuminates the fundamental causal structure of the process. On the question
of blocking events of N5, we see from Figure 1b that while N4 is potentially
altered, N1, N2 and N3 are not.

Algorithms for learning such local independence graphs are known as struc-
ture learning algorithms, amongst which several build the graph by assuming
that a test of a 6→ b | C is available. In this thesis, we propose an empirical test
of local independence. We do so by first showing a general expansion of any
intensity as:

h0 +

∞∑
n=1

∑
(α1,...,αn)

∫ t

−∞
· · ·
∫ t

−∞
hα(t− s1, · · · t− sn)Nα1(ds1) · · ·Nαn(dsn) (1)

We then propose a non-parametric approximation of this expansion by trun-
cating the outer sum and approximating the integrands with a spline basis. Fur-
ther, we suggest how to use the resulting estimates from this procedure to test
empirically whether a 6→ b | C.

In some sense, Figures 1a and 1b represent respectively the input and the
output of the methods presented in this thesis. The road between the two is
paved by a vast existing theory, some of which we present below, alongside our
own contribution, the local empirical independence test.

Local independence was first introduced by (Schweder 1970) and extended by
(Aalen 1987) to all processes which to some extend allow for an intensity. More
recently local independence has been used in the context of graphical models
(Didelez 2000; Didelez 2008). We employ this graphical model framework as
well, amongst others for the applicability in causality (Pearl 2009; Peters et al.
2017).

Several algorithms exist for structure learning in the non-temporal case,
such as the PC- or FCI-algorithms (Spirtes et al. 2000). Further these have
been extended to the dynamic settings (Meek 2014; Mogensen, Malinsky, et al.
2018).

While only few methods exist for testing local independence in dynamic sys-
tems, several independence tests have been developed in the non-temporal case
(Ramsey 2014; Gretton et al. 2008; Fukumizu et al. 2008).

In this thesis, Section 2 gives an introduction to causal inference and in Sec-
tion 3 we present the graphical model theory needed. Section 4 introduces point
processes and in Section 5, we show the intensity expansion from Equation (1).
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In Section 6 we define local independence for point processes, which leads
to the local empirical independence test which we propose in Section 7. In Sec-
tions 8 and 9 we evaluate computational complexity and experimental results,
and Section 10 contains a discussion of our methods and results.
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2 A primer in Causal Inference

The main goal of this thesis is developing conditional independence tests to be
used in point processes. The stimuli for doing so is the use of independence
tests in causal inference, which we thus introduce here.

Although our overall focus is on causal inference in stochastic processes
(dynamical systems), the elementary definitions are easier understood in the
case of static distributions, and so we use this as an introduction to the field.
Our presentation follows a Structural Causal Model approach, similar to that
of for instance (Pearl 2009).

2.1 Structural Causal Models

A central task in causal inference is inferring the causal structure of a given
model, a structure which exceeds that of the joint probabilistic structure. In
particular, by a causal model we mean a SCM, which has the benefit of inducing
interventional distributions, both of which are to be defined below:

Definition 2.1. A structural causal model (SCM) C = (fj , εj)1≤j≤d on
a set of variables (X1, . . . , Xd) is a collection of independent noise variables εj
with a specified joint distribution Pε, and functional assignments fj such that
for each j:

Xj = fj({Xi}i<j , εj)

(with X1 = f1(ε1)). While fj may potentially depend on all j − 1 variables,
often-times a number of these enter trivially. We let pa(j) denote the set of
non-trivial entries of fj

1. ◦

It is clear from this definition, that a causal model entails a joint distribution
over the variables X1, . . . , Xd, which we refer to as the probabilistic distribution,
and denote PC.

Obviously there are several other ways than the SCM framework to spec-
ify a probabilistic model. The quintessential strengthening of a SCM over a
probabilistic model is the fact that causal models entail interventional dis-
tributions. I.e. a causal model describes not only how variables of the model
appear together (the probabilistic distribution), but also how an intervention
affects the system.

Definition 2.2. Consider a SCM C = (fj , εj)1≤j≤d, and let f̃ , ε̃ be some (other)
assignment and noise, which is independent of ε1, . . . , εd. We perform an inter-
vention and obtain an intervened SCM C̃ by replacing one of the assignments
Xj = fj({Xi}i<j , εj) by the assignment Xj = f̃({Xi}i<j , ε̃j).

The joint distribution on X1, . . . , Xd entailed by C̃ is called the inter-
ventional distribution. Commonly, one considers hard interventions, where

1For instance suppose f3(x1, x2, ε3) = 3x2 + ε3. Then we say x1 enters f3 trivially, and
pa(3) = {2}.
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f̃({xi}i<j , y) = y and ε̃j is the degenerate distribution ε̃j = c for a constant c.
Thus the hard intervention is Xj = c. ◦

We elaborate the above definitions with a very simple example.

Example 2.3. Consider the following 3 models of random variables on R2.

• The joint distribution P1 of the vector(
X1

Y1

)
∼ N

(
0,

(
1 3
3 10

)
︸ ︷︷ ︸

:=A

)

• The SCM C2 over variables (X2, Y2) with ε1, ε2 ∼ N (0, 1) and where X2 =
f1(ε1) = ε1, Y2 = f2(X2, ε2) = 3X2 + ε2. This amounts to(

X2

Y2

)
=

(
1 0
3 1

)
︸ ︷︷ ︸

:=B

(
ε1
ε2

)

• The SCM C3 over variables (X3, Y3) with ε1, ε2 ∼ N (0, 1) and where Y3 =
f1(ε1) =

√
10ε1, X3 = f2(Y3, ε2) = 3Y3+ε2√

10
. This amounts to(

X3

Y3

)
=

1√
10

(
1 3
0 10

)
︸ ︷︷ ︸

:=C

(
ε2
ε1

)

Obviously P1 is a probabilistic model, while C2 and C3 are SCMs. It turns out
however that the 3 models entail exactly the same probabilistic distribution,
namely a Gaussian distribution with mean 0 and covariance BBT = CCT =(

1 3
3 10

)
= A.

However, the interventions specified from the models are not the same. In the
case of P1, an intervention is not even specified. We have no a priori assumption
of the origin of the joint distribution, and so we have no idea what would happen
for instance to the distribution of Y1, if we made the hard intervention X1 = 0.

The intervention X2 = 0 in C2 would mean that Y2 = 3 · 0 + ε2, and so the

joint distribution P C̃2 of this intervention is one where X2 = 0 and Y2 ∼ N (0, 1).
The intervention X3 = 0 in C3 on the contrary will not affect the distribution

of Y3, and so P C̃3 is the distribution where X3 = 0, Y3 ∼ N (0, 10).
Hence, although PC2 = PC3 , making the same hard intervention Xi = 0 in

the two models yield different interventional distributions P C̃2 6= P C̃3 . In fact
this also shows, that interventions are a different concept than conditioning.
Obviously, since PC2 = PC3 , they have the same conditional distribution of
X = 0 - a bit of calculation show that Y | X = 0 ∼ N (0, 1). However, this is

not the interventional distribution of X = 0 in P C̃3 . (The fact that they coincide
in C2 relates to the fact that X2 is parentless in this SCM. See (Peters et al.
2017, Section 6.6) for cases where intervention and conditioning coincides.) ◦
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From this example it is clear that structural causal models contain more
information about the distribution than the probabilistic distribution, since the
model also describes what happens under interventions.

We should however be aware that this extra structure doesn’t come for free.
Whenever one uses a SCM to model actual data, one, implicitly or explicitly,
assumes that the SCM encapsules the correct interventional distributions. But
just as well as one could fit an incorrect statistical model, leading for instance
to incorrect predictions E[Y | X], one can fit a wrong SCM, leading to incorrect
interventional distributions.

2.2 Structure learning

As demonstrated above, due to the extra structure, a SCM is an appealing
framework to perform (causal) inference in. In real applications however, one is
not given the SCM, but rather some data set sampled from a SCM. In order to
draw interventional conclusions, one needs to learn the structure of the SCM,
concretely the parents of each variable. We refer to this task as structure
learning.

The essence of causal structure learning is thus to identify from some given
data, which SCMs are likely to have generated this data. This is a difficult
task - Example 2.3 above even show that it may be impossible. Suppose one
obtained data sampled from either C2 or C3 and tried to determine which of the
two would be the true data-generating mechanism. Even for an infinitely large
sample size, one would not be able to quantify which of the two is more likely,
since they entail the same observational distribution, and so generate data sets
from the same distribution.

Nonetheless, in several other cases, much of the structure can be inferred. In
fact, as discussed in (Peters et al. 2017, Chapters 4 and 7), the case of a linear
Gaussian SCM is in some sense the hardest structure to identify (contrary to
the role of the linear Gaussian case almost everywhere else in statistics).

We stress that structure learning (or at least the part we consider here)
focuses on learning the causal parents pa(j) of each variable j. Having done so,
one has not learned the full SCM - the typical structure learning algorithm does
not regard the concrete noise distribution Pε or the concrete functional form of
fj - but only which entries of fj are non-trivial. In (the several) cases where the
concrete forms fj are of interest, one can then compose the structure learning
algorithm with for example a regression algorithm, regressing each variable only
on its parents.

Graphs representing SCMs

Working with SCMs, a useful tool is representing the parent structure as a
graph. Simply, given an SCM C over nodes V = {1, . . . , d}, the causal graph
is the directed graph GC = (V,E) where the edge set E has an edge from node i
to node j if i ∈ pa(j) (and so the parent set defined in the SCM context above
coincide with the graph theoretic concept of a parent set in GC).
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In the static case2, GC is a directed acyclic graph (DAG), due to the in-
equality i < j in the assignments Xj = fj({Xi}i<j , εj). For instance, the SCMs
considered in Example 2.3 have causal graphs:

C2 : X2 Y2 C3 : X3 Y3

Due to the large theory of conditional independence and Markov kernels, it
is of interest to ask: Can conditional independence statements relating to PC be
read off the graph GC? The degrees to which this is possible is summarized in
various Markov properties. Very heuristically, a distribution P satisfies the
so called global Markov property with respect to a graph G, if separation
of A and B by C in G, implies conditional independence A |= B | C in the
distribution P .

If PC is absolutely continuous, it follows from (Peters et al. 2017, Propo-
sition 6.31) that for any SCM, PC satisfies the global Markov property with
respect to its causal graph GC. How this separation is to be defined and several
more details are formally presented in the dynamical case in Section 3.3. For a
comprehensive introduction in the static case, see (Lauritzen 1996).

When forming causal graphs, one should exercise care: It is not in general
true that the distribution of Xj changes under interventions on Xk, even if fj is
non-trivial in xk (i.e. even if k ∈ pa(j)). As an example consider the following
linear Gaussian SCM:

ε1, ε2, ε3 ∼ N (0, 1)

X1 = ε1

X2 = X1 + ε2

X3 = X1 −X2 + ε3

The causal graph for this is:

X1 X2

X3

Clearly the assignment f3 depends both on X1 and X2. Nonetheless, by
inserting X2 = X1 + ε2 into the expression for X3, we obtain X3 = ε3 − ε2,
which is completely independent of X1 - and any intervention on X1 would be
unnoticeable at X3. Intuitively this resonates badly with the arrow X1 → X3.

This example captures the essence of faithfulness (or rather a lack of the
same), which is the assumption that if variables are conditionally independent,
then they are also separated in the graph. Again Section 3.3 gives a formal
treatment in the dynamical case.

2but not necessarily in the temporal, as we will see below
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The PC-algorithm

An example of a structure learning algorithm is the PC-algorithm (Spirtes et al.
2000), which assumes that data originates from a SCM C such that PC is faithful
with respect to GC. The algorithm outputs a graph GPC by starting with a fully
connected graph, and sequentially removes edges a → b | C if a |= b | C, with
the size of conditioning set C gradually increasing throughout the algorithm.
While the algorithm does not guarantee GC = GPC, GC and GPC are guranteed to
induce the same conditional independences under the global Markov property
(this is known as Markov equivalence).

The PC-algorithm supposes that we have an oracle independence test,
i.e. for collections of variables A,B and C, a (completely true) test of whether
A |= B | C. Though this is (potentially) simple mathematics if the joint distri-
bution PC is known, given a real world sample, one needs to develop a way to
test this, and only a noisy answer can be expected.

An important computational feature of the PC-algorithm is, that most of
the independence tests a |= b | C are done with relatively small sets C. As we
shall later learn, conditional independence testing can be very computationally
expensive, the cost growing rapidly in |C|. This motivates ’bottom-up’ type
algorithms, as opposed for instance to a method starting by regressing variables
on the entire system at once.

2.3 Causality in dynamical systems

Let us now consider the case of a dynamical system, i.e. a number of variables
(Xj

t )j=1,...,d that evolves over time. Can we define a framework similar to the
static SCM that enables us to consider e.g. causal parents and interventions?

The answer is definitely Yes if our system evolves only over a finite number
of timepoints t1, . . . , tM . In this setting, one could disregard the temporal un-
derstanding and treat a such system as a static SCM, with noise variables εjt
and assignments Xj

ti = f({Xv
tl
}v∈Vtl<ti

, εjti) introducing only the temporal struc-

ture through the condition that pa(Xj
tl

) ⊆ {Xi
tj | tj < ti}. An example of such a

system is represented in the left side Figure 2, with arrows indicating the parent
sets of the SCM.

However, in a continuous time system, one would need to include uncount-
ably many nodes, which would neither be theoretically nor practically fruitful -
how should one for instance define a PC-algorithm over an uncountable graph?

Instead, one could imagine collapsing the representation into a graph which
omits the time axis, as is for instance the case in the right hand side of Figure 2.
Here we collapse the edges X1

tl
→ X1

ti to a self-loop X1 → X1. Contrary to the
static case, the graph is not a DAG, as is evident from the cycleX1 → X2 → X1.

The following Sections 3 and 6 formalize this idea by local independence, an
independence concept for stochastic processes, and local independence graphs,
which are exactly such collapsed graphs.

While the intuition of a SCM is very helpful in dynamical settings, the
concept does not directly carry over, and so in dynamical systems, we build the
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Figure 2: On the left, a discrete dynamical system over 3 nodes, each arrow
indicating a non-trivial entry of an assignment function in a SCM. On the right,
the system is collapsed to a graph omitting the time.

theory around local independence without any direct reference to a SCM. (Sokol
and Hansen 2014) suggests using SDE’s as a proxy for SCMs, the independent
noises εj replaced by Levy processes driving the SDE, and define interventions
as changes to the (in general non-linear) coefficients of the SDE. While we do
not employ this setup, the approach is coherent with the framework presented
below3.

3In particular (Sokol and Hansen 2014) show that interventions are determined by the
generator, which in a point process is again determined by the intensity, which is used in the
framework presented below
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3 Graph theory and Markov properties

This section presents the concepts needed for developing graphical models for
dynamical systems. In Section 3.1, we first introduce the graph theory that
is relevant for dealing with collapsed graphs for dynamical systems. We then
introduce a number of graph separation criteria in Section 3.2, which is further
used to introduce the Markov properties in Section 3.3 for an abstract inde-
pendence model. In Section 3.4 we introduce the Causal Analysis algorithm, a
dynamical pendant to the PC-algorithm introduced in Section 2.2.

3.1 Elementary graph theory

A directed graph G = (V,E), consist of a finite set of nodes V = {1, . . . , d}
and edges E ⊆ V × V . While several applications does not permit the diagonal
entries of V × V , this is allowed here, and so self-edges are allowed to appear.
We introduce a number of definitions relating to a directed graph G = (V,E):

Parental set For v ∈ V , the parental set pa(v) denotes the set of nodes v′

such that v′ → v, i.e.

pa(v) = {v′ ∈ V | (v′, v) ∈ E}

Note that if v → v then v ∈ pa(v).

Walk A walk from a to b is a sequence of nodes and edges p = (v1, e1, . . . , en−1, vn)
with v1 = a and vn = b and ej connecting vj and vj+1 in the graph.

If n = 1, the walk is called trivial.

Since two nodes v1 and v2, can be connected by up to 2 edges (one in
each direction) at the same time, one needs to specify which exact edges
participate in the graph. However, whenever there is no ambiguity, we
will just associate the walk with the nodes, i.e. p = (v1, . . . , vn).

Path A path from a to b is walk between a and b where no node occurs more
than once. All trivial walks are paths.

Directed path A directed path p = (v1, . . . , vn) from a to b is a path from
a to b where vj → vj+1 for every j. All trivial paths are directed.

Ancestral set For v ∈ V the ancestral set An(v) is the set of nodes v′ ∈ V
such that a directed path from v′ to v exists. More generally for a set
C ⊆ V , we define An(C) = ∪v∈CAn(v). Note that by the convention that
all trivial paths are directed, C ⊆ An(C).

Collider For a path p = (v1, e1, . . . , en−1, vn), a collider is a non-endpoint
node vj such that ej−1 → vj ← ej . Let coll(p) ⊆ {v2, . . . , vn−1} denote the
set colliders of p. Further let noncoll(p) denote the subset of {v2, . . . , vn−1}
which appear as non-colliders. Note that {v2, . . . , vn−1} = noncoll(p) ∪
coll(p), though this union is in general not disjoint.
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Front-door thinning For a given subset A ⊆ V , let GA denote the graph
obtained by removing all edges leaving A, i.e. GA = (V,EA) with

EA = E
∖ ⋃

a∈A,v∈V
(a, v)


Subgraph Consider a subset F ⊆ E of vertices. The subgraph GF of G

induced by F is the graph:

GF := (F,E ∩ F × F )

i.e. the graph on vertices F where an edge v → v′ occurs in GF if v, v′ ∈ F ,
and v → v′ in G.

Supergraph If V ⊆ V ′ and E ⊆ E′, we way that G′ = (V ′, E′) is a super-
graph of G.

Moral graph The moral graph Gm is obtained by adding an (undirected) edge
between all pairs of nodes that have a common child (i.e. marrying un-
married parents, thus the name), and removing directions on all arrows.
Both the cases A→ B and A� B yield the same result, namely A−B.

3.2 µ-separation

When working in a given class of probability distributions, a central task in
applying graphical models is to develop graph-separation concepts which in a
meaningful way encode the independence structure of the distribution - as we
will see, concretely by enabling the global Markov property of the distributions
with respect to independence graphs.

Example 3.1. As a motivation, consider 3 random variables X1, X2 and X3

with a joint distribution P . Suppose we are also given the graph:

G: X1 X2 X3

Is G helpful in describing P? Obviously this depends much both on what P
concretely is and what we mean by helpful.

Intuitively X2 separates X1 from X3 in G, since all paths from X1 to X3

pass through X2, and so one definition of helpful would be that this separation
is reflected in P as an independence of X1 and X3 given X2. This section for-
malizes different types of graph separation, and the following section introduces
exactly such a way of relating separations in G to independence in P . ◦

Definition 3.2. A graph separation ⊥ is a ternary relation on subsets of
nodes. I.e. given a graph G = (V,E), for any A,B,C ⊆ V , it can be determined
from the graph separation whether A ⊥ B | C or not. ◦

11



As a basic concept, one could think of A being separated from B given C
if all paths from A to B run through C - this is indeed the case of undirected
graph separation defined below - but in general the concepts are more complex.

Classically several such separations have been developed, e.g. d-separation
(Pearl 1988), the generalization m-separation (Richardson, Spirtes, et al. 2002)
or δ-separation (Didelez 2008). The latter is presented here, and developed
further into µ-separation (Mogensen, Malinsky, et al. 2018).

Definition 3.3. In an undirected graph G, we say that A is separated from B
given C if every path starting at a node a ∈ A and ending at a node b ∈ B
intersects C. ◦

This enables us to introduce δ-separation:

Definition 3.4. Let G be a DG and let A,B,C be disjoint. We say that A is
δ-separated from B given C if A is separated from B by C in the undirected
graph (GBAn(A∪B∪C))

m.
That is, one considers the subgraph induced by the ancestors of A,B and C,

removes edges leaving B and moralizes - and then considers separation in this
undirected graph. Notationally we write A ⊥δ B | C. ◦

If A,B and C are not disjoint, one can define that A is δ-separated from
B given C if A\(B ∪ C) ⊥δ B | C\B, although this is not in general very
satisfactory - for instance if A = B, since one always has that ∅ ⊥δ B | C\B, it
is always the case that A ⊥δ A | C.

Note the asymmetry in Definition 3.4 - contrary to other separation crite-
ria used in graphical models, such as d-separation, the front-door thinning is
asymmetric in A and B.

Example 3.5. For a simple example consider the graph:

a d c b

To check whether a ⊥δ b | c and b ⊥δ a | c, we form the moralized, frontdoor-
thinned ancestral graphs.

a d c b a d c b

a d c b a d c bG{a}An(a,b,c):

G{b}An(a,b,c);

(G{a}An(a,b,c))
m:

(G{b}An(a,b,c))
m:

 

 

Since there are no paths from a to d in (G{b}An(a,b,c))
m, in particular no paths

connect a and b without intersecting c. Hence, a ⊥δ b | c. On the contrary, in

(G{a}An(a,b,c))
m, the path a− d− b connects a and b without intersecting c, and so

b 6⊥δ a | c. ◦
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In many cases, it is easier to check δ-separation from the following equivalent
characterization, which uses d-separation.

Definition 3.6. Let G be a DG with a 6= b ∈ V and C ⊆ V \{a, b}. A d-
connecting path p from a to b given C is a path from a to b such that:

1. coll(p) ⊆ An(C)

2. noncoll(p) ∩ C = ∅

If no path from a to b is d-connecting given C, we say that a is d-separated
from b given C and write a ⊥d b | C. ◦

Proposition 3.7. For a directed graph G = (V,E), let A,B,C ⊆ V be disjoint.
Then A ⊥δ B | C if and only if there are no d-connecting paths p between

an a ∈ A and b ∈ B given C such that p contains an edge leaving the set B, i.e.
an edge i→ j for i ∈ B, j /∈ B.

Proof. A very detailed proof can be found in (Didelez 2000, Proposition 1.2.5).
Alternatively, it is a classic result (see e.g. (Lauritzen 1996, Proposition 3.25))

that d-separation is equivalent to undirected separation in the moralized an-
cestral graph, as used in Definition 3.4. The requirement in Definition 3.6
that no edge leaves B is simply analogous to the front-door thinning in Defini-
tion 3.4.

Example 3.8. Consider again Example 3.5. Using the alternative formulation,
we see that a ⊥δ b | c, because any path from 1 to 4 would include the edge
c← b.

Also we observe that b 6⊥δ a | c: Let p be the path a← d→ c← b. p has no
edges leaving a, coll(p) = c ⊆ An(c) and noncoll(p) = d which is disjoint with
{c}. Thus p is connecting, and b 6⊥δ a | c. ◦

We now introduce µ-separation. First a bit of context: While δ-separation is
useful in several cases, it has the disadvantage of assuming that A,B and C are
disjoint. As motivated by Figure 2, we are interested in graphs where some, but
not all, nodes have self-loops. To deal with a self-loop, one needs to consider
separations of the type a ⊥ a | C, and so it is essential to have a separation
criterion which can handle non-disjoint A and B.

This issue was addressed by (Meek 2014) by introduction of δ∗-separation,
which was simply an extension of δ-separation to the non-disjoint cases, but as
commented by (Mogensen and Hansen 2018), δ∗-separation aligned badly with
local independence (which we introduce below) - in particular one is unlikely to
obtain a global Markov property with respect to the local independence graph
(which we also introduce below).

Instead (Mogensen, Malinsky, et al. 2018) introduce µ-separation, and for
dynamic systems show regularity conditions, such that the local independence
model will satisfy the global Markov property.

Definition 3.9. Let G be a DG with a, b ∈ V,C ⊆ V . A µ-connecting walk p
from a to b given C is a walk from a to b such that:

13



1. p is non-trivial and its final edge points to b.

2. a /∈ C

3. coll(p) ⊆ An(C)

4. noncoll(p) ∩ C = ∅

◦

Definition 3.10. For a DG G we say that b is µ-separated from a given C
(and write a ⊥µ b | C) if no walk from a to b is µ-connecting given C.

Further, for subsets A,B ⊆ V , we say that B is µ-separated from A given
C if for all a ∈ A and all b ∈ B, a ⊥µ b | C. ◦

Clearly µ-separation and δ-separation have very similar definitions. Indeed,
if A,B,C are in fact disjoint, in the µ-separation definition, trivially a /∈ C
and p will be non-trivial. Hence the only difference in this case is between the
front-door thinning of δ-separation, and the ’head-at-b’ of µ-separation. In fact,
(Mogensen and Hansen 2018) show that:

A ⊥δ B | C ⇐⇒ A ⊥µ B | B ∪ C (2)

for disjoint A,B,C. Consequently µ-separation can be seen as an extension
of δ-separation - with the additional benefit, that we can discuss non-disjoint
separations like A ⊥µ A | C, without having a trivial answer (as is the case for
δ-separation).

Example 3.11. Consider again the graph from Definition 3.6, where we verified
that a ⊥δ b | c and b 6⊥δ a | c. This is easily reproducible with µ-separation. For
instance, since no walk from a to b has a final edge pointing to b, a ⊥µ b | (b, c),
as is also predicted by Equation (2).

But for non-disjoint sets, this is not the case. Trivially a ⊥δ a | c, while the
path a→ d→ a is µ-connecting given c and so a 6⊥µ a | c. ◦

To further illustrate this concept, we consider the following two examples,
both which may generate conclusions counter-intuitive, to a reader accustomed
to dealing with d-separation in DAGs.

Example 3.12. Consider the 2 different graphs in the first column of Table 1.
We consider the µ-separations in these. Of particular notice is that a ⊥µ a | b
in a→ b. A first intuition would be that since collider b on the walk a→ b← a

Graph Given ∅ Given b
a→ b a ⊥µ a|∅ a ⊥µ a|b
a← b a 6⊥µ a|∅ a ⊥µ a|b

Table 1: µ-separation statements of a from a in 2 different graphs and given
either ∅ or b.
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is in the conditioning set, this path is µ-connecting. However, since the final
arrow does not have a head at a, this path is not connecting. As we shall later,
this will become reasonable, when dealing with a process that does not depend
on itself. ◦

Example 3.13. Consider the two graphs in Example 3.13 below. We seek to
examine whether b ⊥µ a | ∅.

G1 : a bc G2 : a bc

Figure 3

In G1, this is indeed true, since any walk from b to a will not have a final
head at a, and so cannot be µ-connecting. On the contrary, in G2, the walk
b← c← a→ a is µ-connecting, and so b 6⊥µ a | ∅.

Thus the occurrence of a self-loop at a is crucial for whether the empty set
is blocking paths from b to a. ◦

3.3 Markov properties

We introduce the pairwise and global Markov properties, defined for abstract
separation-criteria and independence models.

As discussed above, Markov properties are essentially a way of formulating
that a graph G contains the relevant information about the independence struc-
ture of some distribution P . Typically we phrase the independence structure of
P into an independence model I.

Definition 3.14. For a finite collection of vertices V , an independence model
I is a ternary relation on V , consisting of triples A,B,C ⊆ V , which we write
〈A,B | C〉. Formally:

I ⊆ P(V × V × V )

◦

That is for each combinationA,B,C ⊆ V , either 〈A,B | C〉 ∈ I or 〈A,B | C〉 /∈
I.4 This allows us to define the global Markov property and faithfulness:

Definition 3.15. For a graph G = (V,E), an independence model I and a
graph separation criterion ⊥, we say that I has the global Markov property

4The obvious motivation for independence models is to define the independence model that
corresponds to the conditional independences of a distribution P over a collection of random
variables X1, . . . , Xd by

〈A,B | C〉 ∈ I ⇐⇒ XA |= PXB | XC

where A,B,C ⊆ V denotes collections of variables.
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with respect to G and ⊥ if:

A ⊥ B | C =⇒ 〈A,B | C〉 ∈ I

for all A,B,C ⊆ V . ◦

Consequently, if I satisfies the global Markov property with respect to G, G
contains relevant information, in the sense that several independence statements
of I can be read off from G as separations.

As demonstrated in Section 2.2, there may be independences of I, which
cannot be read from G. But if I satisfies faithfulness with respect to G, all the
independences of I are included in the separations of G:

Definition 3.16. Given a graph G = (V,E), an independence model I and a
graph separation criterion ⊥. We say that I is faithful with respect to G and
⊥ if:

〈A,B | C〉 ∈ I =⇒ A ⊥ B | C

for all A,B,C ⊆ V . ◦

Besides the global Markov property and faithfulness, a number of Markov
properties can be defined for a graph, depending on the type of graph. One
example is the pairwise Markov property.

Definition 3.17. Let G = (V,E) be a directed graph (DG), and I an indepen-
dence model. I satisfies the pairwise Markov property with respect to G
if:

a /∈ pa(b) =⇒ 〈a, b | V \{a}〉 ∈ I

◦

Definition 3.18. Let I be an independence model over V . Letting

E = {(a, b) | 〈a, b | V \{a}〉 /∈ I} ,

one can define a local independence graph by the directed graph G = (V,E).
◦

Note that an independence model I will satisfy the pairwise Markov prop-
erty with respect to the local independence graph G = (V,E) it induces, because
if a /∈ pa(b), then (a, b) /∈ E and this is only the case if 〈a, b | V \{a}〉 ∈ I.

So for any independence structure I, one can can get a directed graph G
such that I satisfies the pairwise Markov property wrt. G. A central question
is: For a given independence model I, are there separation criteria ⊥ such that
we are guaranteed to have the global Markov property of I with respect to G
and ⊥? If this is indeed the case, we can explore the independence structure of
I simply by reading of the separations of G.
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In Section 6 below, we define local independence, which is forms an inde-
pendence model I for point processes. (Didelez 2008) showed that, under mild
regularity assumptions, indeed I satisfies the global Markov property with re-
spect to the local independence graph G and ⊥δ. Further (Mogensen and Hansen
2018) argue that when extending I to include also non-trivial statements regard-
ing overlapping sets, I still satisfies the global Markov property with respect to
G and ⊥µ.

3.4 CA Algorithm

We now present the CA algorithm as proposed in (Meek 2014). It resembles
the PC-algorithm discussed in Section 2.2, but where the PC-algorithm learns
undirected edges first and then orientates them, the CA directly learns the
directed edges (which essentially is due to the asymmetry of local independence).
For now it is assumed that an oracle test is available, i.e. that we have access
to the true answers of whether 〈v′, v | C〉 ∈ I or not.

In a real application, typically one does not know I, and so a major ambition
of this paper is to develop empirical tests which can replace this oracle test. See
Section 7 for more. Given such an empirical test, this is simply plugged into
the below algorithm, to replace the test ”if 〈v′, v | C〉 ∈ I”.

Algorithm 1 Causal Analysis algorithm

Initialize G = (V,ECA) as a fully connected graph
for v ∈ V do:

n = 0
while n < |pa(v)| do:

for v′ ∈ pa(v) do:
for C ⊆ pa(v)\{v′} with |C| = n do:

if 〈v′, v | C〉 ∈ I then update G by removing (v′, v) from ECA.

n = n + 1
return G = (V,ECA)

Let GCA = (V,ECA) denote the graph returned by algorithm Algorithm 1. If
G0 = (V,E0) is the local independence graph of I, we hope that GCA equals G0.
The below results from (Meek 2014), gives guarantees in the fully observable
case. While (Meek 2014) uses δ∗-separation, we propose the following two purely
graphical properties, such that the result generalize to abstract separation.

Definition 3.19. Let ⊥ be a graph separation. We say that ⊥ satisfies

P1 If whenever there exist C ⊆ V \v′, such that v′ ⊥ v | C, it follows that
(v′, v) /∈ E.

P2 If whenever an edge (v′, v) is not in E, it follows that there exist C ⊆ pa(v),
such that v′ ⊥ v | C.

◦
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Lemma 3.20. d-, δ- and µ-separation in DGs satisfy P1. δ- and µ-separation
in DGs satisfy P2.

Proof. To show P1, suppose (v′, v) ∈ E (in the d- and δ- cases, we only need
to consider v′ 6= v). Then the directed path v′ → v neither has colliders nor
non-colliders, and so the path is d-, δ- or µ-connecting for any C ⊆ V \v′. By
contraposition, P1 follows.

Suppose (v′, v) /∈ E. We show P2 by showing that v′ ⊥ v | pa(v). To show
δ-case, we use the formulation of Proposition 3.7. If v′ = v, trivially v′ ⊥δ v | ∅.
Else, we must show that no path p from v′ to v which has no arrows leaving v
is d-connecting given pa(v). Let c→ v be the last edge (apart from potentially
some self-edges). Since c is a non-collider, and c ∈ pa(v), it follows that p is not
d-connecting. Hence v′ ⊥δ v | pa(v).

In the µ-case, similarly, any potentially µ-connecting walk p from v′ to v
would have as its last edge c→ v. But again c is a non-collider, and c ∈ pa(v),
and so p is not µ-connecting given pa(v), and v′ ⊥µ v | pa(v).

If there could be any ambiguity, we let A ⊥ B | C [G] to denote a graph
separation in the graph G. Also paG(v) denotes the parents of v relative to the
graph G.

Lemma 3.21. If ⊥ satisfies P1 and I satisfies faithfulness wrt. G0 = (V,E0)
and ⊥, then E0 ⊆ ECA.

Proof. Take an edge e = (v′, v) in E0. If, for a contradiction, e /∈ ECA, by the
design of the algorithm, there exists a set C ⊆ V \{v′} such that 〈v′, v | C〉 ∈ I.
By faithfullness this implies that v′ ⊥ v | C [G0]. By assumption of P1, this
implies e /∈ E0, which is a contradicition.

Proposition 3.22. If ⊥ satisfies P1 and P2 and I satisfies both faithfulness
and the global Markov property with respect to G0 and ⊥, then ECA = E0.

Proof. For a contradiction, suppose that there exists e = (v′, v) ∈ ECA\E0.
Since e /∈ E0, by P2, there exists a set C ⊆ paG0(v)\{v′}5, such that v′ ⊥ v |
C [G0]. Hence, by the global Markov property, 〈v′, v | C〉 ∈ I.

By assumption of faithfulness and P1, it follows from Lemma 3.21 that
E0 ⊆ ECA. In particular paG0(v) ⊆ paGCA

(v) and so C ⊆ paGCA
(v)\{v′}. But

then at some point, the algorithm iterator n would have taken the value |C| for
the combination (v′, v), and because 〈v′, v | C〉 ∈ I, (v′, v) would be removed
from ECA, contradicting that e ∈ ECA. It follows that ECA ⊆ E, and thus
E = ECA.

Hence in the fully observable case, with an oracle local independence test
and under the assumptions of Proposition 3.22, Algorithm 1 is guaranteed to
return the correct local independence graph.

5which is really just paG0
(v), because since e /∈ E, v′ /∈ paG0

(v)

18



A very brief note on Markov equivalences

In most of the graphical model literature, Markov equivalence is discussed. Al-
though we shall not discuss this at length, we show here, that for µ-separation
in DGs, Markov equivalence yields no identifiability issues:

Two graphs G1 = (V,E1),G2 = (V,E2) are Markov equivalent, if they
have the same separation statements. As a simple example, a → b → c and
a← b← c are Markov equivalent with respect to d-separation (essentially since
for any path p, coll(p) and noncoll(p) are the same for both graphs).

Let [G] be the equivalence class consisting of all graphs that are Markov
equivalent to G. If an independence model I satisfies the global Markov property
with respect to G, I satisfies it with respect to all graphs in [G]. In the context
of learning algorithms, this leads to identifiability problems, since algorithms
like Algorithm 1 can only hope to identify [G0] and not G0.

However Lemma 3.20 and Proposition 3.23 shows that for µ-separation in
DGs, no two distinct graphs can have the same separation statements, and so
every Markov equivalence class only contains one element.

Proposition 3.23. Let ⊥ be a graph separation satisfying P1 and P2. Also
let G1 = (V,E1) and G2 = (V,E2) be two directed graphs. Then G1 = G2 if and
only if they have all the same graph separations. Formally, G1 = G2 if and only
if for all A,B,C ⊆ V :

A ⊥ B | C [G1] ⇐⇒ A ⊥ B | C [G2]

where the notation [G] denotes separation in the graph G.

Proof. If G1 = G2, trivially they also have the same separations. For the other
direction, suppose for a contradiction that G1 6= G2 but they have the same
separations. Without loss of generality, there is an edge a → b in G1, which is
not in G2.

By P2, there exist C ⊆ paG2(b) such that a ⊥ b | C [G2]. Since a is not a
parent of b in G2, a /∈ C. Since G1 and G2 share separations, also a ⊥ b | C [G1].
But then by P1, there is no edge a→ b in G1, which is a contradiction.

19



4 Point Processes

In this section, we introduce point processes, the fundamental class of models
for which we develop methods in this thesis.

In Section 4.1 we introduce the theoretical foundations for point processes.
In Section 4.2 we introduce some martingale theory leading to the compen-
sator, and in Section 4.3 we discuss intensities of point processes. Section 4.4
introduces Hawkes processes, and Section 4.5 regards Marked Point Processes,
a particular multivariate form of point processes. Finally in Section 4.6 we
introduce the likelihood of a point process, which is to become important for
statistical purposes in the following chapters.

4.1 Random measures

Roughly, a point process is a stochastic process describing how a number of
points appear in a space X . We will always assume that X is a complete,
separable, metric space, and call it the outcome space. Very often X will be
equal to R or a subset thereof, and we will pay most of our attention to this case.
One should however keep in mind that the theory of point processes, including
several of the theorems, extends well beyond R.

Definition 4.1. A measure µ on X (equipped with the Borel σ-field B(X )) is
called boundedly finite if for every bounded A ∈ B(X ), µ(A) <∞. ◦

Let N#
X denote the set of all boundedly finite integer-valued measures on

(X ,B(X )). As discussed in (Daley and Vere-Jones 2007, chapter 9), one can

equip N#
X with a meaningful metric, and hence a Borel field B(N#

X ). Implicitly
we shall utilize this over and over again, but we shall only make explicit reference
once, namely in the following definition:

Definition 4.2. For a complete separable metric space X and background space
(Ω,F , P ), a point process is a F/B(N#

X )-measurable mapping N : Ω→ N#
X .

That is, for a fixed A ∈ B(X ), ω 7→ Nω(A) is a mapping from Ω to N0∪{∞}.
Oftentimes we suppress the dependence on ω from the notation, viewing N(A)
as a random variable on N0 ∪ {∞} (with support on N0 if A is bounded). ◦

One could in fact consider more generally mappings to the set of boundedly-
finite, but not necessarily integer-valued, measures on X . (Daley and Vere-Jones
2007) denotes these random measures, and several results generalize from
point processes to random measures. We shall however restrict our attention to
point processes.

Point processes has a natural interpretation as the count of events occurring
randomly in X . For a point process N and a fixed ω, Nω is an integer-valued
measure, and so for a measurable set A, one could regard Nω(A) as the count of
events occurring in this set. When not keeping ω fixed, N(A) is a random value
on N∪ {∞}, which one could regard as being the distribution of the number of
events in A.
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Definition 4.3. For any (deterministic) boundedly finite measure Λ on (X ,B(X )),
we say that N is a Poisson process with intensity measure Λ if for any
bounded disjoint sets B1, . . . , Bm ∈ B(X ) and n1, . . . , nm ∈ N0, one has that
the joint distribution satisfies:

P

(
N(B1) = n1, . . . , N(Bm) = nm

)
=

m∏
j=1

Λ(Bj)
nje−Λ(Bj)

nj !

◦

Essentially, a Poisson process is a point process satisfying two requirements:
The count N(A) of any bounded set follows a Pois(Λ(A))-distribution, and the
counts in disjoint intervals are independent.

If X = R (or possibly Rn) and Λ is proportional to the Lebesgue measure
`, we will denote the process a homogeneous Poisson process, denoting the
proportionality constant by the rate. If Λ is not globally proportional to `, we
denote this the inhomogeneous case.

X1

X2

X3

T1 T2 T3

Yt

t

Figure 4: Illustration of the construction in Example 4.4, where the homoge-
neous Poisson process is created from exponentially distributed waiting times
Xn.

Example 4.4. Consider the case with X = R, and let N be a Poisson process
with intensity measure Λ = `. Now t 7→ Nt := N(0, t] defines a stochastic
process, where each Nt marginally is Pois(t) distributed.

A very natural way to think of this process is as follows: Let X1, X2, . . .
be i.i.d. exponentially distributed with mean 1, let Tn =

∑n
j=1Xj and let

Yt =
∑
n∈N 1Tn≤t. This construction is illustrated in Figure 4. Now for any

m ∈ N:

P (Yt ≥ m) = P (Tm ≤ t) = 1−
m−1∑
n=0

e−t

n!
tn

The latter follows because Tm follows an Erlang(1,m)-distribution, with this
CDF. By rearranging, one recognizes from the CDF of Yt that Yt is Pois(t)-
distributed for each fixed t, and Y thus has the same marginal distributions as
N . In a similar fashion, essentially utilizing the ’forgetfullness’ of the exponential
distribution, one could show that the finite dimensional distributions of Y match
those of N , and so Y and N have the same distribution.
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Thus, one can view Nt as the number of events occurring before time t,
each event taking an exponentially distributed time to arrive after the former.
Heuristically and when simulating, this characterization of a unit rate Poisson
process is very helpful. The same result follows if Λ = λ · ` for some constant
λ and Xn exponentially distributed with mean 1

λ (and to some extent for an
inhomogeneous process as well, as exemplified in the inverse hazard simulation
scheme (see Hansen 2013)). ◦

Definition 4.5. A point process N is called simple if

P

(
N({x}) < 2 for all x ∈ X

)
= 1

◦

Note that the notion of simplicity is almost everywhere with respect to the
probability space, but everywhere with respect to the outcome space.

If point processes constitute an intuition of counting events in X , simpleness
can be understood as the requirement that no two events can occur in the same
location. Simplicity of a process is very desirable, and we shall very often assume
the process to be simple.

4.2 Some martingale theory

We now restrict our attention to the temporal case X = R, where counting
measures are easily interpreted as stochastic processes, as was the case of Nt =
N(0, t] in Example 4.4. Though many authors consider temporal processes on
(0,∞), we here do so on R. This eases some of the ’boundary’-problems arising
from point processes started at 0, but on the other hand poses some challenge in
the existence of a process. For instance when dealing with a Hawkes process, as
we are to define below, one needs to exercise care. It is possible for the intensity
of the process to grow approximately exponentially towards infinity (without
the process exploding). While this process would be perfectly well-defined on
(0,∞), it is not on R.

Often we shall consider a counting measure N on R, but only the counting
process Nt = N(0, t] of events after 0. To incorporate knowledge of prior events,
we could consider the filtration F = (Ft)t≥0 = (σ(Kt ∪H0))t≥0 where H0 is the
σ-field generated by the jumps of N prior to 0 and Kt is the σ-field generated
by the process on the interval [0, t].

Cadlag martingales

A central tool in temporal point processes is martingale theory. Consider a
filtration F = (Ft)t≥0, and let X = (Xt)t≥0 be an adapted stochastic process.
We say that X is a martingale if Xt ∈ L1(Ft) for all t ≥ 0 and for any s ≤ t:

E [Xt | Fs]
(∗)
= Xs a.s.

or a submartingale or supermartingale if (∗) is ≥ or ≤ respectively.
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Example 4.6. A counting process Nt := N(0, t] is a submartingale if t 7→ Nt
is adapted to Ft and EN(0, t] <∞ for all t > 0. This follows because

E[Nt | Fs] = E [N(0, s] | Fs] + E [N(s, t] | Fs]
= Ns + E [N(s, t] | Fs] ≥ Ns a.s.

The last inequality follows from the fact that N(s, t] = Nt−Ns ≥ 0 a.s. - in fact
this is the only point process property we are using, and so the above in general
shows that adapted increasing processes are (unsurprisingly!) submartingales.

◦
An nice property in analysis of stochastic processes is for the process to be

right continuous with a limit from the left, i.e. almost surely:

Xt = lim
ε↓0

Xt+ε, Xt−ε converges for ε ↓ 0

for all t ≥ 0. Processes with this property are often denoted càdlàg, an acronym
for the French continue à droite, limite à gauche. The case of left-continuity
and right-limit, one similarly denotes càglàd.

Example 4.7. A process being càdlàg is often a question of choosing a càdlàg
version. Two stochastic processes X and Y are versions of each other if P (Xt =
Yt) = 1 for all t ≥ 0 - which is subtly different from them being indistinguishable,
in which case P (Xt = Yt for all t ≥ 0) = 1.

Consider, as in Example 4.4, a unit rate Poisson process N , and let Nt :=
N(0, t]. By boundedly-finiteness, Nt is càdlàg: For any t > 0, almost surely
N(0, t] is finite, and so for each ω, an ε exists such that no events occur in
(t− ε, t). In particular the process N(0, t− ε] coming from the left will, for each
ω, be constant on this interval, and hence converge. Similarly, Nt almost surely
is right-continuous.

Instead, one could have chosen Ñt := N(0, t) instead, which would be càglàd,
by similar arguments. Since the Poisson process has an intensity measure that is
absolutely continuous with respect to the Lebesgue measure (in particular in the
unit-rate case it equals the Lebesgue measure), for all t ≥ 0, P (Ñt = Nt) = 1.
The fact that at any time t, the two will be almost surely equal, motivates us to
think of them as one process, but in two different versions. Note that since the
Poisson process will almost surely have jumps, P (Nt = Ñt for all t ≥ 0) = 0. ◦

Oftentimes we are interested in having a càdlàg counting process with an
intensity (to be defined below) which is càglàd. A related concept is that of a
predictable process:

Definition 4.8. Given a filtration F = (Ft)t≥0, the predictable σ-field is
the σ-field on Ω × [0,∞) generated by all left continuous adapted processes
(understood as maps from Ω × [0,∞) → R). We say that a process X is
predictable, if the mapping (ω, t) 7→ Xt(ω) is measurable with respect to the
predictable σ-field. ◦

Since càglàd processes are in particular left-continuous, any càglàd adapted
process is predictable. It can be shown that the predictable sigma-field also is
generated by the sets A× {0} for A ∈ F0 and A× (s, t] for A ∈ Fs, s > 0.
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Compensators

A slightly weaker concept than that of martingales are local martingales:

Definition 4.9. An adapted process X is called a local martingale if there
exists an almost surely increasing sequence (τn)n∈N of stopping times such that

P (τn →∞ forn→∞) = 1

and for each n, the stopped process Xτn := (Xτn∧t)t≥0 is a martingale. ◦

Note that if X is indeed a true martingale, by choosing τn =∞ for all n, it
is also local. Local martingales enable us to introduce the compensator, in the
following combined theorem and definition.

Theorem 4.10 (Doob-Meyer). Let N be a counting process. Then there exists
a unique (up do indistinguishability), increasing, predictable process A, denoted
the compensator, and a local martingale M , such that for all t ≥ 0:

Nt = Mt +At (3)

Proof. This follows from (Jacod and Shiryaev 1987, I.1.Theorem 3.18), utilizing
that (non-exploding) counting processes are increasing and of locally integrable
variation.

The compensator is an important tool in describing N . In particular, since
local martingales have constant marginal means for all t ≥ 0:

E[Mt] = E[M t
t ] = E

[
E[M t

t |M t
0]
]

= E[M t
0] = E[M0]

it follows from Equation (3) that E [Nt] = E [At] for all t. Being monotone,
predictable and in many cases continuous, the compensator is often more well-
behaved than N , but still preserves the mean structures of N .

4.3 Intensities

Definition 4.11. For a process N with compensator A, we say that the process
λ is the intensity of N if for all t > 0,

∫ t
0
λsds is a version of At. ◦

The following proposition, which appears in (Daley and Vere-Jones 2007,
Corollary 14.1.V), yields a guarantee on when a process allows for an intensity.

Proposition 4.12. Let N be a simple counting process on R+ with events
{Tn} and compensator A. The conditional distribution of Tn − Tn−1 | FTn−1 is
absolutely continuous with respect to the Lebesgue measure if and only if A is
absolutely continuous. In this case, N admits a density, i.e. At =

∫ t
0
λsds for

some process λ.

24



In short, if the waiting times to the next event are absolutely continuous,
the compensator allows for an intensity.

Although one can actually derive a closed form expression for λ based on
the densities of the conditional distributions Tn − Tn−1 | FTn−1

(in particular
the hazard ratio of this distribution), in some cases, one can simply guess a
compensator A and check that N −A is martingale.

Example 4.13. Consider a Poisson process N as introduced in Definition 4.3,
and suppose that Λ = λ`, for some λ > 0. That is, N is a homogeneous Poisson
process with rate λ. Let Nt = N(0, t] be the process that counts the events up
until time t. It turns out that the intensity of this process is also λ.

To see this, we guess the compensator At =
∫ t

0
λds = λt for t ≥ 0. Since

A is continuous, it is in particular left-continuous, and thus predictable. Nt is
Pois(λt)-distributed, so Nt −At ∈ L1 for all t. Now for any s ≤ t,

E [Nt −At | Fs] = E [N(0, t] | Fs]− λt
= N(0, s] + E [N(s, t] | Fs]− λ(t− s)− λs
= Ns −As + E[N(s, t]]− λ(t− s)
= Ns −As

We here utilize the properties of a Poisson process. First off, the count in (s, t] is
independent of Fs, because counts in disjoint regions are independent. Secondly,
N(s, t] follows a Pois(λ(t− s))-distribution, and so E[N(s, t]] = λ(t− s).

Of course this result generalizes to the inhomogeneous Poisson process with
Λ = λ · `.

Also note that the intensity of the Poisson process, λ, is deterministic. In
general however, λ will most often be stochastic, as we shall for instance see
with the Hawkes process below. ◦

Defining processes by intensities

In the martingale setting above, we have viewed the intensity purely as a quan-
tity derived from the process. Often we shall work reversely: Instead of as-
suming first a process, we will specify an intensity, and consider processes with
this intensity. One has to be a bit careful in doing this: The intensity will be a
function of the process it generates, and so the development of the two is heavily
entangled.

As will be evident below, we need to start our process somewhere. To still
allow for a process on all of R, we let T = (. . . , T−1, T0) be a collection of past
events. Suppose that λt = λ(t, {Ns}0≤s<t,T) is a mechanism, which takes as
its input T and the development of a process Ns on 0 < s < t. Our intention is
then to find a process N such that λt is the intensity of N at time t. For some
fixed mechanism λ, can we be sure, that a such N exists, such that the intensity
of N at all times is λ evaluated in N?

Theorem 4.14 below guarantees the existence of a process satisfying a par-
ticular integral equation and Proposition 4.16 shows that such a process indeed
has λ as its intensity.
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Figure 5: Illustration of a sample path of λ. Also the points of µ, a unit rate
Poisson process, are shown as crosses. Our proposed process N is constructed
via the points of µ which appear below the λ-curve, here the points at T1, T2

and T3. The proof of Theorem 4.14 below relies heavily on λ being càglàd, such
that λ at T2 cannot ’jump below the point that made it jump’ (which would
create somewhat of a chicken-or-the-egg paradox). Indeed λ jumps down, but
only at times t = T2 + ε for ε > 0. In this example Lt(λ) is the region below
the curve, and µ(Lt(λ)) = 3 in the plotted region. Labels λ0 and λ1 are used
for reference below.

Consider some positive stochastic process Y . The sample paths of Y define
regions under the curve. On an interval (0, t] the region under the curve is:

Lt(Y ) :=
{

(s, y) ∈ R2 | 0 < s ≤ t, 0 ≤ y ≤ Ys
}

Now suppose that µ is a unit rate Poisson process on R2. Then µ(Lt(Y )) is the
number of points arriving under the Y -curve in the interval (0, t]. Naturally,
the larger the values of Y , the more points appear in Lt(Y ).

The following result, which appears in (Hansen 2013), essentially has Yt = λ
and lets N be the process t 7→ µ(Lt(λ)).

Theorem 4.14. Suppose a history of past events T = (. . . , T−1, T0) is given.
Further assume that λt = λ(t, {Ns}0≤s<t,T) is a mechanism, such that t 7→

λ(t, {Ns}0≤s<t,T) defines a càglàd process for any càdlàg counting process N .
Also let µ be a unit rate homogeneous Poisson process on R2. Then there exists
a stopping time T such that on [0, T ) there exists a point process N which for
all t ∈ [0, T ) solves the stochastic integral equation:

Nt =

∫
1(0,t](s)1[0,λ(s,{Nu}0≤u<s,T)](y)µ(ds× dy)

or in short

Nt = µ(Lt(λ))

for t ∈ [0, T ) (though this conceals the dependence of λ on N). In the case
T <∞, then N(0, T − ε]→∞ for ε ↓ 0.
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Remark. Actually, it is slightly inaccurate to call N a point process (in our
definition) in the case T < ∞, because the resulting process is not boundedly-
finite. However, N(0, T − ε] is finite for any ε > 0. ◦

Proof. One creates a sequence of processes N0, N1, . . . and corresponding λnt =
λ(t, {Nn}0≤u<t),T) as follows: N0 is set to constant 0, and the following pro-
cesses are defined by letting

Tn = inf
t
µ(Lt(λ

n−1)) > Nn−1
t (4)

and Nn =
∑n
j=1 1[Tj ,∞).

By Equation (4), N0
t = µ(Lt(λ

0)) for t < T1, and so N0 is a solution on
[0, T1). However also by Equation (4), N0 is not a solution in the point T1, and
so we create N1 = 1[T1,∞).

Since N0 = N1 on [0, T1), also λ0
t = λ1

t on [0, T1], where the end-point follows
since both are càglàd, hence left-continuous. Thus also µ(Lt(λ

0)) = µ(Lt(λ
1))

on [0, T1], and this allows us to know that µ(LT1(λ1)) = 1, and so indeed N1 is
a solution on all of [0, T1].

One could proceed this inductively, again using that Nn
t = µ(Lt(λ

n)) for
t ∈ [0, Tn+1), and showing Nn+1 is a solution on [0, Tn+1].

We terminate this procedure if Tn+1 = ∞6. In this case, we have found
a solution on all of [0,∞). If Tn < ∞ for all n, let T = limn→∞ Tn. N =∑∞
n=1 1[Tn,∞) is a solution on [0, T ) whether T is finite or infinite.
The last statement of the theorem follows trivially, because Tn → T < ∞

only if the sequence of events has an accumulation point at T .

In Figure 5, the intensity λ0 would be the line section which doesn’t jump
at T1, but rather continues its path (since it is a function of N0, which has no
jump at T1). λ1 on the contrary, agrees first with λ0 on [0, T1), but jumps after
T1. The breaking point in the proof is that by left-continuity of λ0 and λ1, they
agree on all of the interval [0, T1], and in particular, have the same points under
the curve in [0, T1].

Example 4.15. For an example where T <∞, consider the intensity

λ(t, {Ns}0≤s<t) = (1 + lim
s→t−

Ns)
2

on R+. I.e. the intensity in the interval (Tn, Tn+1] is (1+n)2, and so Tn+1−Tn |
Fn is exp

(
1

(1+n)2

)
-distributed, and marginally Tn is distributed like a sum∑n

j=1Xj , where Xj is exponentially distributed with mean 1
j2 .

Thus E[Tn] =
∑n
j=1

1
j2 , and E[limn→∞ Tn] = limn→∞ E[Tn] <∞. In partic-

ular P (limn→∞ Tn <∞) = 1. ◦
6Which is possible, since it’s the infimum of a set that could potentially be empty.
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This example is however slightly sought after, and most often, we will con-
sider ’non-exploding’ intensities, where T = ∞. As shown in (Jacobsen 2006,
Example 4.4.5), this is for instance the case if for all t, λt ≤ a+ bNt− for some
a, b ≥ 0.

Theorem 4.14 together with the following proposition, show that for any λ
satisfying the requirements in Theorem 4.14, there exists a point process N ,
such that λ is the intensity of N .

Proposition 4.16. Let λ satisfy the requirements in Theorem 4.14, and let N
be the solution to the integral equation. If N is adapted and ENt <∞ for all t,
then Nt −

∫ t
0
λudu is a martingale (with λu shorthand for λ(u, {Nv}0≤v<u,T)).

In other words, λ is indeed the intensity of N .

Proof. Let s ≤ t. We rewrite:

E
[
Nt −

∫ t

0

λudu | Fs
]

= Ns −
∫ s

0

λudu+ E [Nt −Ns | Fs]− E
[∫ t

s

λudu | Fs
]

We show that the two last two terms cancel, which will establish the mar-
tingale property.

With a slight abuse of notation, let µ(dx× du) = µ(dx)⊗ µ(du) denote the
factorization into marginal measures. Now it follows that:

E [Nt −Ns | Fs] = E

[∫ t

s

∫ λu

0

1µ(dx)µ(du) | Fs

]

=

∫ t

s

∫
E[1[0,λu](x) | Fs]dxdu

The last equality uses the fact that the Poisson measure µ(du) is independent
of Fs for u ∈ (s, t], and so E[µ(du) | Fs] = E[µ(du)] = du. Similarly µ(dx) is
independent of Fs for u > s, and so also this reduces to dx. Also consider:

E
[∫ t

s

λudu | Fs
]

=

∫ t

s

E[λu | Fs]du

=

∫ t

s

E
[∫

1[0,λu](x)dx | Fs
]

du

=

∫ t

s

∫
E
[
1[0,λu](x) | Fs

]
dxdu

Since the two expressions coincide, it follows that E
[
Nt −

∫ t
0
λudu | Fs

]
= Ns−∫ s

0
λudu. Consequently Nt −

∫ t
0
λudu is a martingale.

In conclusion, Theorem 4.14 and Proposition 4.16 show that, under regu-
larity conditions, for a given mechanism t 7→ λ(t, {Nu}0<u<t,T), there exists
a process N on (0,∞) such that λ is the intensity of N , and so to specify a
process, we simply need to specify λ.
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Our construction of N starts in 0, and so past information is included
explicitly as T. If there is no ambiguity, we abuse notation and write t 7→
λ(t, {Nu}u<t).

4.4 Hawkes processes

We now consider a particular type of processes, namely Hawkes processes (Hawkes
1971). Hawkes processes are so-called self-exciting, in the sense that occurrence
of an event will increase the intensity of further events. We introduce Hawkes
processes as a cluster process:

Immigrant-Child process

Consider a homogeneous Poisson process N0 with rate λ0. We call the events
of N0 immigrants, since they are introduced to our system without any pre-
decessors.

Further, for any point t0, immigrant or not, initiate in t0, a new (inde-
pendent) inhomogeneous Poisson process Ct0 with intensity measure µt0(A) =
µ(A − t0), and such that v = µ(R+) ≤ 1. We denote Ct0 the child process
and observe that the child processes are identically distributed apart from the
translation to ’time-of-birth’ t0. Again each child of t0 may spark its own child
processes, and so let Dt0 denote the descendant process of t0, that is the sum
of all children-processes which originated from t0.

We let N denote the sum of both the immigrant process and all child pro-
cesses, and call N a Hawkes process. That is:

N(A) =

∫
R
Dt(A)N0(dt) +N0(A) (5)

We show that this is well defined by showing that for bounded A, N(A) <∞
a.s. For an event t0, let de(t0) = Dt0(R) be the total number of descendants of
t0.

Proposition 4.17. If v < 1, for any point t0:

E[de(t0)] =
v

1− v

In particular, P (de(t0) <∞) = 1

Proof. Let gn denote the number of n’th generation descendants of t0. I.e. the
number of children of t0 are g1 and so forth. Since g1 is Poisson, E[g1] = v.
Also by the tower property:

E[g2] = E
[
E[g2 | g1]

]
= E[vg1] = v2

And similarly, by induction, E[gn] = vn. Thus, since de(t0) =
∑∞
n=1 g

n, the
result follows.
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This enables us to show stability of the Hawkes process in the following way:

Proposition 4.18. For any bounded set A, P (N(A) <∞) = 1.

Proof. By Proposition 4.17, every immigrant has at most finitely many descen-
dants, and so if N(A) = ∞, by the pidgeon-hole principle, infinitely many
immigrants have descendants in A. This is only the case if (Dt(A) > 0 i.o.)
which by the Borel-Cantelli lemma has probability 0 if∫

P (Dt(A) > 0)N0(dt) <∞

And indeed this is the case because:

E
[∫

R
P (Dt(A) > 0)N0(dt)

]
=

∫
P (Dt(A) > 0) dt

i)

≤
∫
R
E
[
Dt(A)

]
dt

=

∫
R
µ(A− t)dt

ii)
= `(A)µ(R) <∞

where i) is the Markov inequality and ii) uses Tonellis theorem and the shift
invariance of the Lebesgue measure `.

Hence we see that the Hawkes process will a.s. only assign finitely many
points to any bounded set, and in particular Equation (5) defines a well defined
point process.

Hawkes with intensities

Suppose that µ has density with respect to the Lebesgue measure, say µ = f · `.
Then the child process Ct0 of a point t0 with intensity measure µ(A − t0) has
intensity f(t− t0) for any t ∈ R.

The intensity of the Hawkes process is simply the sum of the child-intensities:

λt = λ0 +
∑
s<t

f(t− s) = λ0 +

∫ t−

−∞
f(t− s)N(ds)

A frequent choice of µ is for it to be an unnormalized exponential distribu-
tion, i.e. with 0 < β0 < β1 one takes f(t) = β0 exp(−β1t) for t > 0, or to let f
be a mixture of such exponential kernels (with proper restrictions on coefficients
such that still µ(R+) < 1). The latter possibility, gives rise to the intensity:

λ(t, {Ns}0≤s<t) = λ0 +

∫ t−

−∞

∑
i

βi0e
−βi1(t−s)N(ds)
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Figure 6: Simulated sample path from the bivariate Hawkes process described in
Example 4.21. The left and right plot show intensities for each of the coordinate
processes, and both plots show events in N1 (circles) and N2 (triangles).

4.5 Marked Point Processes

We now turn to the theory of marked (or multivariate) point processes.

Definition 4.19. Let V be a finite mark space {1, . . . , d}. A marked point
process N is a point process on the space R× V .

The marginal measure Ng(A) = N(A, V ) for A ∈ B(R) is called the ground
process, and decomposes due to additivity of measures, such that Ng(A) =∑d
v=1N(A, {v}). ◦

Some definitions allow for a larger set V with the additional requirement
that the marginal measure is boundedly finite (which is e.g. not the case if
V = R and N a homogeneous Poisson process) or X 6= R, but considering a
finite V and X = R suffices for our applications.

As such, a marked point process is just a generic point process on this space,
but often one interprets a point x× v ∈ R× V as an event of type v appearing
at the position x. The ground process then is the process in R of occurrences
of any type, while N(A, {v}) is count of events of type v occurring within a set
A ∈ B(R).

We denote the measures A 7→ N(A, {v}) the coordinate processes, and
write them Nv(A). If the coordinate process Nv allows for an intensity, denote
this λv.

Note that if t 7→ Nv(0, t] −
∫ t

0
λvt dt is a Ft-martingale in t for each v ∈ V ,

then also t 7→ Ng
t −
∫ t

0
λgtdt is a martingale with λg =

∑
v∈V λ

v, and so
∑
v∈V λ

v

is the intensity of the ground process.
We say that a process N has independent marks, if given the ground

process Ng, the marks are independent, each depending only on its own position.
In this case, the distribution of each mark is characterized by the mark kernel,
γ(v | x), which for each x ∈ R is a distribution over V .
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If a ground process has intensity t 7→ fgt , the coordinate process Nv has
intensity t 7→ γ(v | t)fgt .

Definition 4.20. We say that N is a marked Hawkes process on R× V , if

• The immigrant process is a marked process with independent marks and
a mark kernel γ0(v) which is independent of x, and where the ground
process is a homogeneous Poisson process with rate λ0.

• Given the parent, the child process is a marked process with independent
marks, and where the ground process is a inhomogeneous Poisson process,
with v < 1. Both the intensity measure µvpa and the mark kernel γ(v |
x, vpa) is allowed to vary by the mark of the parent.

and N is the sum of both immigrant and child processes. ◦

Again, if µv allows for a ground density fv for each v ∈ V , the intensity of
each coordinate process is:

λvt = γ0(v)λ0 +
∑
v′∈V

∫ t−

−∞
fv
′
(t− s)γ(v | t− s, v′)Nv′(ds)

Example 4.21. As a simple example, consider a marked Hawkes process with
V = {1, 2}. Let the intensity be:

λ1(t) = 0.1 +

∫ t−

0

e−2(t−s)N2(ds)

λ2(t) = 0.1 +

∫ t−

0

1

2
e−(t−s)N1(ds) +

∫ t−

0

e−2(t−s)N2(ds)

A simulation from this process is seen in Figure 6. One observes that events
in N1 only directly affect the intensity λ2, whereas events in N2 affect both λ1

and λ2. ◦

4.6 Likelihoods

For a point process, we now introduce the likelihood. As in most of statistics,
the likelihood is used for selecting the element of a model class which best fits
the data. In particular, we shall parametrize intensities of processes as λ(β),
and maximize the likelihood with respect to β.

Definition 4.22. Let N be a point process on R which admits the predictable
intensity λ. Let t1, . . . , tn be some observed sequence of points in [0, T ]. Then
the likelihood is the quantity:

LT (t1, . . . , tn) = exp

 d∑
j=1

log λtj −
∫ T

0

λt dt


◦
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If it causes no ambiguity, we suppress t1, . . . , tn from the notation, although
of course their values are highly important. If we consider a point process with
intensity λ(β) parametrized by β ∈ Θ, we denote the likelihood LT (β).

We may also be interested in the distribution of the likelihood. If T1, . . . , Tn
are the events of N in [0, T ] (viewed as random variables), the likelihood eval-
uated in them will be:

LT = exp

 n∑
j=1

log λTj −
∫ T

0

λtdt


= exp

(∫ T

0

log λtN(dt)−
∫ T

0

λtdt

)

(which we also write LT (β) when parametrizing).
It is curious to consider the difference to the likelihoods typically consid-

ered in classical, non-temporal statistics. Here the likelihood often is of a form
L(θ) =

∏
i p(xi | θ), similar to the first term of the point process likelihood.

The second term
∫ T

0
λtdt however, is not matched by the classical likelihood

computations. In effect this is because, although a high intensity in a region
explains the occurrence of a point, it also leads to the question: Why didn’t
any further events occur? This is addressed by the second term in the point
process likelihood. While a high intensity benefits in the first term (because
it explains an observed event), it is penalized in the second for not explaining
further events that did not happen.

In the case that we paramatrize λ in a way such that λ(β) is linear in β (i.e.
λ(aβ1 + bβ2) = aλ(β1) + bλ(β2) for all a, b ∈ R), the below proposition comes
in handy.

Proposition 4.23. If λ(β) linear in β, then logLT (β) is concave.

Proof. We consider the two terms of

logLT (β) =

n∑
j=1

log λtj (β)−
∫ T

0

λt(β) dt

Linear functions are (the only functions that are) both convex and concave. Fur-
thermore, composing a concave function with a linear, yields a concave function.
Since log is concave, log λtj (β) is concave for each j, and so is the sum. Since

λt(β) is also convex for each t, so is the integral, and thus −
∫ T

0
λt(β) dt is con-

cave. Adding the two concave summands again yield a concave function. See
(Boyd and Vandenberghe 2004) for further details.
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5 Intensity Expansion

In this section we shall develop a representation for intensities of a point process.
Throughout we shall consider a multivariate point process N = (N1, . . . , Nd)
with corresponding intensities λ1, . . . , λd, all assumed predictable with respect
to the filtration induced by N .

In the classic theory of Volterra series (Volterra 1887; Volterra 1959), in a
dynamic time-homogeneous system, one fits the relationship between an input
process xt and output process yt by the expansion:

yt = h0 +

N∑
n=1

∫ t

−∞
· · ·
∫ t

−∞
hn(s1, . . . , sn)xt−s1 · · ·xt−snds1 · · · dsn

Here the functions hn are the so called Volterra kernels, which contain the
dynamics of the system. Under sufficient regularity conditions (Volterra 1959;
Ahmed 1970), yt can be approximated arbitrarily well when N tends to infinity.

Can this result be translated to the world of point processes, with the coor-
dinate processes as our input and the intensity as the output? There are several
differences: The point processes are highly non-continuous and while the above
system had a fixed input structure over time, in a point process, the number of
influencing events is stochastic in any region.

Yet, in this section, we deliver the proof that a similar representation is
possible. The methods we use are completely different to those of the Volterra
series, though the result looks surprisingly much the same.

Similarly to (Cohen 2012), our proof is based on martingale convergence,
but with the important difference, that we don’t restrict ourselves to bounded
memories of the kernels and start the process at −∞.

The main result of the section is Theorem 5.1, which we state first, and
dedicate Sections 5.1 to 5.4 to proving. Section 5.1 establishes a density of
function spaces, in Section 5.2 we prove the core mechanism on the interval
(−∞, 0], and in Section 5.3 we extend to intervals (−∞, T ], all without marks.
Section 5.4 shows that the proof can easily be extended to the case of marked
point processes.

We note that our interest is primarily in the convergence of such representa-
tion, not the concrete functional forms of the kernels. In a real application, one
would make various approximations anyways (cf. Section 7.1), and so there’s
no guarantee that we recover the concrete kernels. But from a theoretical point
of view it is valuable to know, that the representation converges.

Like the Volterra theory, our result assumes time homogenity of λt, which
roughly means that only the relative distance to events affect λt (and not the
concrete value of t). This is formally stated in Assumption 5.11.

For a simple notation, let α = (α1, . . . , αn) denote a generic tuple of length
n of the coordinate indices, e.g. (1, 1, 2) is a 3-tuple referring twice to coordinate
N1 and once to N3. We write the sum over all 3-tuples as

∑
|α|=3.
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Theorem 5.1. Let λ be the intensity of one of the coordinates of N . Assume
that λt ∈ L1(Ft) for all t ∈ [0, T ]. Further suppose that Assumption 5.11 holds
for λ. There exist a sequence of functions hατ , such that for every t ∈ [0, T ], the
representation:

h0
τ +

∞∑
n=1

∑
|α|=n

∫ t

−∞
· · ·
∫ t

−∞
hατ (t− s1, · · · t− sn)Nα1(ds1) · · ·Nαn(dsn)

approximates λt arbitrarily well in L1 when τ → −∞.

Throughout we will assume that N is a simple, non-exploding point process
on R. For simplicity we will often use the notation:∫

A

f dNα(tn) :=

∫
A

· · ·
∫
A

f(t1, . . . , tn)Nα1(dt1) · · ·Nαn(dtn)

5.1 Density in L1(F)
Let T1, T2, . . . be the jumps of N starting at 0 and moving backwards in time,
i.e. . . . < T2 < T1 ≤ 0.

Definition 5.2. For τ ≤ 0, let Fτ be the σ-algebra generated by events in [τ, 0].
One can write this as:

Fτ = σ(T1 ∨ τ, T2 ∨ τ, . . .)

Also let F = σ(∪τ≤0Fτ ). As the following proposition shows, we do in this way
generate all the information about process N . ◦

Proposition 5.3. The σ-algebra F equals FN0 := σ(T1, T2, . . .).

Proof. For any i, Ti ∨ τ is σ(Ti)-measurable, and in particular FN0 -measurable.
Hence Fτ = σ(T1 ∨ τ, . . .) ⊆ FN0 , and so F = σ(∪τFτ ) ⊆ FN0 .

Reversely, we show that for each n, Tn is F-measurable. Since FN0 is the
smallest σ-algebra making all Tn’s measurable, FN0 ⊆ F will follow.

For any n, (Tn ∨ τ) −→ Tn for τ → −∞ (potentially with Tn = −∞). Since
(Tn ∨ τ) is F-measurable for each τ (it is a generator), Tn is F-measurable.

We shall now consider denseness of the subspaces of measurable and inte-
grable functions with respect to Fτ . The following definition is from (Schilling
2017, Chapter 17):

Definition 5.4. A set D ⊆ Lp, p ∈ [1,∞] is dense if for every λ ∈ Lp there
exists a sequence (λn)n≥0 ∈ D such that limn→∞ ‖λ− λn‖p = 0. ◦

It turns out that the functions that are L1-integrable and measurable wrt.
Fτ for some τ are dense in L1(F).

Theorem 5.5. The union of function spaces ∪τ≤0L1(Fτ ) is dense in L1(F).
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Proof. Take any λ ∈ L1(F). By the tower property one has that λτ := E[λ |
Fτ ] ∈ L1(Fτ ) and further it follows from (Sokol and Rønn-Nielsen 2013, Sec-
tion 5.4) that (λτ )τ≤0 is a martingale (in −τ) and that E[λ | Fτ ] converges in
L1 to E[λ | F ] = λ as τ → −∞.

Because each λτ ∈ L1(Fτ ) ⊆ ∪τL1(Fτ ), it follows that ∪τL1(Fτ ) is dense
in L1(F).

5.2 The integral representation of λ

In this section, for some λ0 ∈ L1(Fτ ), we show for eachM ∈ N that λ01N([τ,0])=M

can be written as a sum of integrals of deterministic functions. These integrands
will play the role of the Volterra kernels, but only given the count N([τ, 0]). We
then sum over these terms, to obtain a general representation of λ0.

The following classic result, here as presented in (Sokol and Rønn-Nielsen
2013), motivates expansion of the λ’s to functional approximations:

Lemma 5.6. A real valued random variable λ is σ(Y ) measurable if and only
if there exist a measurable map φ : (E; E)→ (R,B(R)) such that:

λ = φ(Y )

In our case this means that if λ0 ∈ L1(Fτ ), there exists a measurable map
f such that:

λ0 = f(T1 ∨ τ, T2 ∨ τ, . . .) (6)

To obtain an integral representation of λ0, we can utilize this function. Define
fnτ (t1, . . . , tn) = f(t1, . . . , tn, τ, τ, . . .), which we’ll denote fn if τ is clear from
the context7, or f(t1, . . . , tn).

Suppose for a moment that exactly one event occurred in the interval A :=
[τ, 0], i.e. T1 ∈ A, Tn /∈ A for n ≥ 2. Then one could write:

λ0 = f(T1 ∨ τ, T2 ∨ τ, . . .) = f(T1, τ, τ, . . .)

=

∫ 0

τ

f(t, τ, τ, . . .)N(dt) =

∫ 0

τ

f1N(dt)

This however depends heavily on the assumption that N(A) = 1. If instead the

interval contained say m events, then
∫ 0

τ
f1(t)N(dt) = f1(T1) + . . . + f1(Tm)

which is not equal to λ0 (because in this case λ0 = fm(T1, . . . , Tm)).
Is there a way to write λ0 in this integral representation? The following

proposition devices a procedure, such that one can obtain f(T1) exactly if
N(A) = 1 and else 0, using only integrals of deterministic functions (if one
could use non-deterministic functions, the problem was easily solved, by includ-
ing an 1N(A)=1 term).

7It is only in Theorem 5.10 and after, that we will need to consider fτ for various τ .
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Proposition 5.7. Assume N is a simple, non-exploding point process. For
λ0 ∈ L1(Fτ ) one can compute λ01N(A)=1 (with A = [τ, 0]) by integrals of deter-
ministic integrands as follows:

λ01N(A)=1 =

∞∑
n=1

βn

∫
A

f(t1)1Dn dN (tn) (7)

where βn = (−1)n−1

(n−1)! , n ≥ 1, and:

Dn = {(t1, . . . , tn) ∈ [−τ, 0]n | ti 6= tj for i 6= j}

Proof. The proof runs constructively in the following way: First we hope that
really N(A) = 1, and so λ0 =

∫
A
f1
1D1

dN (t1). If this is not the case, we need
to cancel all the terms generated by

∫
A
f1
1D1 dN (t1), which is sequentially done

by integrals of higher and higher order, in each round n choosing a coefficient βn
such that if actually n events occurred in the interval, then all previous terms
cancel.

As a primer, consider the term:∫
A

f(t1)1D1 dN (t1)−
∫
A

f(t1)1D2 dN (t2) +
1

2

∫
A

f(t1)1D3 dN (t3)

For an ω ∈ (N(A) = 1) the first integral equals f(T1), the latter two are 0
(since there’s only one distinct jump so 1D2

(t1, t2) = 0). Denote this the n = 1
case.

If ω ∈ (N(A) = 2) (’n = 2’ case) the first integral yields f(T1) + f(T2), but
the second yields also f(T1) + f(T2), and so by choosing β2 = −1, the whole
thing becomes 0, which is the desired since also 1N(A)=1λ0 = 0 for such ω.
(Again 1D3 = 0 if there’s only 2 jumps).

If instead ω ∈ (N(A) = 3), the compensation in the n = 2 case overcompen-
sated, since the first term would be f(T1) + f(T2) + f(T3) but the second term
would then be −2 [f(T1) + f(T2) + f(T3)]8. Now however, the third term will
cancel out both the overcompensation of the first and the second term, when
choosing a coefficient β3 = 1

2
9.

And so we continue. In each round n, we assume that n is the true number
of events in A, and given this, we calculate the overcompensations of previous
rounds. We then choose the coefficient βn that would cancel out all previous
terms, if n was indeed the true number of events. And in that case, there are
no distinct pairs of size n + 1, and so round n will terminate the scheme. If n
is not the true count in A, round n+ 1 continues the scheme.

Since N is non-exploding, N(A) <∞ a.s. and so this compensation-scheme

will almost surely terminate in a finite number of steps. I.e.
∑M
n=1 βn

∫
A
f(t1)1Dn dN (tn)

8Because T1 is the first element of both the pairs (T1, T2) and (T1, T3), and similar for T2
and T3.

9Because T1 is the first element of both the pairs (T1, T2, T3) and (T1, T3, T2), and similar
for T2 and T3.
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converges almost surely for M →∞, since the increments will be 0 eventually,
justifying the representation in Equation (7).

We can also compute the coefficients βn. β1 = 1 is required, to have the
desired if N(A) = 1.

The number of f(T1) terms generated in round n if the true number of events
in A is m ≥ n is

gn(m) =
(m− 1)!

(m− n)!

Note that we only need to count f(T1) terms, because by symmetry one gener-
ates the same number of f(T2), f(T3), . . . events, and the compensation similarly
is always symmetric. Now in round n, believing that n is the true number of
event, the number of f(T1) terms cumulated until now is:

cn =

n−1∑
j=1

βjgj(n) =

n−1∑
j=1

βj
(m− 1)!

(m− j)!

Thus to compensate we choose βn = − cn
gn(n) , because if n was indeed the true

count, the total number of terms after round n would be

cn −
cn

gn(n)
· gn(n) = 0

Hence the coefficients βn follow the recursion:

βn = − cn
gn(n)

= −
∑n−1
j=1 βj

(n−1)!
(n−j)!

(n−1)!
(n−n)!

= −
n−1∑
j=1

βj
(n− j)!

(8)

We show that βn = (−1)n−1

(n−1)! is a solution to this equation.

First off, it matches the initial condition β1 = 1. Moving everything to the
left hand side, Equation (8) reads:

n∑
j=1

βj
(n− j)!

= 0

Inserting the proposed solution, one obtains:

n∑
j=1

(−1)j−1

(n− j)!(j − 1)!
=

1

(n− 1)!

n−1∑
j=0

(−1)j
(
n− 1

j

)

=
1

(n− j)!

(
1 + (−1)

)n−1

= 0

And so βn = (−1)n−1

(n−1)! indeed solves the recursions.
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This easily extends to the following corollary:

Corollary 5.8. Let λ0 ∈ L1(Fτ ). For M ∈ N, one has:

λ01N(A)=M =

∞∑
n=M

βMn

∫
A

f(t1, . . . , tM )1Dn1OM dN (tn)

with βMn = (−1)n−M

(n−M)! for n ≥M and

OM = {(t1, . . . , tM ) ∈ [−τ, 0]n | t1 < t2 . . . < tM}

Proof. The case M = 1 is covered in Proposition 5.7. For M ≥ 2, the compen-
sation scheme essentially is the same, with the additional requirement that the
firstM jumps should be ordered. To see this, consider the case ofM = 2 and ω ∈
(N(A) = 2). Then

∫
A
f2(t1, t2)1D2 dN (t2) would produce f(T1, T2) + f(T2, T1)

which is undesired, whereas when including 1O2
, f(T1, T2) is returned as desired.

The combinatorics of how many tuples (t1, . . . , tn) with t1 < . . . < tM or-
dered (as fixed by OM ) and all t’s distinct (by Dn) remains the same, namely

gMn (m) = (m−M)!
(m−n)! and so the scheme runs in a completely similar fashion.

Extending further on Proposition 5.7 and Corollary 5.8, we may include
the base-rate λ01N(A)=0. Let h0 be the value of λ0 on this set (that is h0 =

f(τ, τ, . . .)). Now
∑∞
n=1

∫
A

[
f(t1)− h0

]
1Dn dN (tn) will return the additional

to base-rate intensity f(T1)− h0 if N(A) = 1 and 0 else.
Thus, as the following theorem shows, we can in general decompose λ0 ∈

L1(Fτ ).

Proposition 5.9. Assume N is a non-exploding point process. For λ0 ∈ L1(Fτ )
one can compute λ0 from deterministic integrands hnτ and a deterministic con-
stant h0

τ as:

λ0 = h0
τ +

∞∑
n=1

∫
(−∞,0]

hnτ (t1, . . . , tn) dN (tn) a.s.

with

hnτ (t1, . . . , tn) = 1[τ,0]1Dn

n∑
M=1

βMn
[
fτ (t1, . . . , tM )− h0

τ

]
1OM

Proof. Still we let A = [τ, 0]. Now the result follows directly be writing λ0 =
1N(A)=0λ0 +

∑∞
M=1 λ01N(A)=M , and write each term λ01N(A)=M as given by

Corollary 5.8. By reordering terms, one obtains the desired representation.
Note that there are no problems of switching orders of summation, since for
each ω ∈ (N(A) <∞), only finitely many of the summands are non-zero.

We summarize the discussions above, by noting that any L1(F) variable can
be arbitrarily well approximated using the additive representations from above.
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Theorem 5.10. Let λ0 ∈ L1(F). λ0 can be arbitrarily well approximated by
representations of the form

h0
τ +

∞∑
n=1

∫
(−∞,0]

hnτ (t1, . . . , tn)N(dtn)

where the functions hnτ , n ∈ N are supported on [−τ, 0].

Proof. It follows by Theorem 5.5 that there exists a sequence (λτ )τ∈N such that

λτ ∈ L1(Fτ ) and λτ
L1

→ λ0. From Proposition 5.9 it follows that each λτ has the
desired representation, and by construction it also follows that hnτ is supported
on [−τ, 0].

5.3 Representations on (−∞, t]
So far, the representation has been with respect to σ-algebras regarding events
on (−∞, 0]. We now extend these to all of R by shifting events back to 0.

Let Nπ denote the shifted point process Nπ(A) = N(A + π). With a sub-
stantial abuse of notation, one could also define the mapping π(x) = x − π. It
then follows that π(N) = Nπ.

Let λNt denote the intensity of our original process at time t. Also let λN
π

t

be the intensity at time t in the shifted process Nπ

One needs to exercise care in interpreting this understanding. If one under-
stands the intensity of a point process as something solely derived after observing
the entire process, then of course the intensity would simply shift as one shifted
the process in time.

Rather however, if the process is the one defined by the intensity, as is the
case in Theorem 4.14, the intensity in the shifted process may be different to
what one would have in the unshifted process, and so shifting would yield an
entirely different intensity, hence process.

One could for instance imagine that λ had a ’hard’ dependency on t, such
that λt would react differently to past events depending on the numerical value of
t. In the notation λ(t, {Ns}s<t) the essential question is whether the underlined t
truly enters the function. It is exactly this types of case the following assumption
seeks to rule out.

Assumption 5.11 (Time-homogenity). Assume that λNπ = λN
π

0 for all π ∈ R.
In the language of Theorem 4.14, the intensity mechanism is independent of

the time coordinate, i.e.

λ(π, {Ns}s<π) = λ(0, {Nπ
s }s<0)

From this, the representations above are extended in time under Assump-
tion 5.11:

Theorem 5.12. Let λt ∈ L1(Ft) for all t ∈ [0, T ], and suppose Assumption 5.11
holds.
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Letting hnτ be the representations from Theorem 5.10 above, each λt can be
arbitrarily well approximated by the representations:

h0
τ +

∞∑
n=0

∫ t

−∞
hnτ (t− s1, . . . , t− sn)N(dsn)

Proof. The proof runs by shifting λt back to 0 using homogenity, and there
using the representation results shown above.

To simplify the computation below, observe that for any f , by a change of
variable:∫ b

a

f(−x)Nπ(dx) =

∫ b

a

f(−x)π(N)(dx) =

∫ b+π

a+π

f(−(x− π))N(dx)

By Assumption 5.11, λt = λ(t, {Ns}s<t) = λ(0, {N t
s}s<0) for each t. λN

t

0 is

integrable because λNt is, and it is measurable with respect to FNt0 , the filtration
generated by the shifted processes N t at 0.

Each λ(0, {N t
s}s<0) ∈ L1(FNt0 ), and so by the above, each can be arbitrarily

well approximated. The essential point is that the functions hn are common to
all t ∈ [0, T ]. Remember that the functions h are composed by the functions f ,
which described how measurable objects depended on the past jumps T1, T2, . . ..
Suppose λ(0, {N t1

s }s<0), λ(0, {N t2
s }s<0) are the intensities at two different times

t1, t2 pulled back to 0. If their dependence functions f t1 and f t2 were different,
this would clearly violate the time homogeneity.

It now follows by Theorem 5.10 that one can approximate λt = λ(0, {N t
s}s<0)

arbitrarily well from functions

h0 +

∞∑
n=1

∫
(−∞,0]

hn(−s1, . . . ,−sn)N t(dsn)

= h0 +

∞∑
n=1

∫
(−∞,t]

hn(−(s1 − t), . . . ,−(sn − t))N(ds)

= h0 +

∞∑
n=1

∫
(−∞,t]

hn(t− s1, . . . , t− sn)N(ds)

The negative arguments in h, we can add simply because h is a generic function,
and so an extra negative sign could be hidden inside the h.

5.4 Extension to Marked Point Processes

The above framework is readily extended to marked point processes. Remember
that with V = {1, . . . , d} and C ⊆ V , one has for any A ∈ B(X) that:

N(A× C) =
∑
v∈C

N(A× {v}) =
∑
v∈C

Nv(A)

41



When integrating, this factorizes:∫
A×C

f(x, v)N(dx, dv) =

∫
A

f(x, v)
∑
v∈C

Nv(dx) =
∑
v∈C

∫
A

fv(x)Nv(dx)

where we let fv(x) := f(x, v). Similarly in higher dimensions:∫
A×C

f(x1, v1, . . . , xn, vn)N(dxn × dvn) =
∑
|α|=n

∫
A×C

fα(x1, . . . , xn)Nα1(x1) · · ·Nαn(xn)︸ ︷︷ ︸
=:Nα(dxn)

where fα(x1, . . . , xn) = f(x1, α1, . . . xn, αn) and α ∈ V n is some tuple of length
n.

Proof of Theorem 5.1. Essentially we just need to show that Theorem 5.12 ex-
tends to the marked setting.

In the marked setting, the generated σ-field becomes Fτ = σ((T1∨τ, v11T1>τ ), . . .).
A multivariate version of Proposition 5.3 follows because (T1 ∨ τ, v11T1>τ ) →
(T1, v11T1>−∞)10, and so denseness of ∪τL1(Fτ ) also follows in the marked case.
Thus the function in Equation (6) could have been written:

λ0 = f ((T1 ∨ τ, v11T1>τ ), . . .)

In the technical Proposition 5.7, one could have proceeded in exactly the same
way, but using integrals

∫
A×V f(t1, v1)N(dt1×v1) instead. If we still compensate

based on the event time (that is, use the same construction with Dn and OM
irregardless of marks), the compensation will work in the same way, irregardless
of whether or not marks are present.

Therefore also Proposition 5.9 can be generalized such that for λ0 ∈ L1(Fτ ),
it holds that:

λ0 = h0
τ +

∞∑
n=1

∫
(−∞,0]×V

hnτ (t1, v1, . . . , tn, vn)N(dtn × dvn)

= h0
τ +

∞∑
n=1

∑
|α|=n

∫
(−∞,0]

hατ (t1, . . . , tn) dNα(tn) a.s.

Now by the density of ∪τL1(Fτ ), the result follows for λ0 ∈ L1(F), and finally
the proof of Theorem 5.12 show that the results on arbitrary intervals (−∞, t]
generalize to the marked case.

10Which is the desired limit, with the convention that vn = 0 if Tn = −∞.
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6 Local Independence

In this section, local conditional independence for point processes is defined,
and a few examples are presented. This will provide a concrete instantiation of
the abstract independence models considered in Section 3.

Let V = {1, . . . , d} be a mark space for a point process N = (N1, . . . , Nd)
with intensities λ1, . . . , λd.

For a subset C of V , denote by FCt the sub σ-field of Ft which is generated by
processes {N c, c ∈ C}. For each b ∈ {1, . . . , d}, one can define the FCt -intensity

of b, λb,Ct , to be the conditional expectation E[λb | FCt ].
More technically, regularity of this process is guaranteed by taking the op-

tional projection version of E[λb | FCt ] (which will be càdlàg if FCt is) and then

taking λb,Ct to be the left limit limε↓0 E[λb | FCt−ε]. See (Mogensen, Malinsky,
et al. 2018) and references therein.

Following (Mogensen, Malinsky, et al. 2018), we define local independence
as follows:

Definition 6.1 (Local independence). Let V be the mark space of the point
process, and A,B,C ⊆ V . We say that B is locally independent of A given
C if for all b ∈ B, the FA∪Ct -intensities λb,A∪Ct have FCt -adapted versions. If B
is locally independent of A given C, we write

A 6→ B | C

and if this is not the case, A→ B | C. ◦

Local independence defines an independence model I where:

〈A,B | C〉 ∈ I ⇐⇒ A 6→ B | C

Roughly, A 6→ B | C if, when observing collections of subprocesses NA and
NC , our estimate of the intensity of B at any time t doesn’t depend on any
information from the subprocesses NA\C up to time t.

Remark. Note that a process is allowed to be locally independent of itself, i.e.
a 6→ a | C. For instance this is the case for a unit rate homogeneous Poisson
process Na, in which the intensity is constantly 1, and so λa,at = E[1 | Fat ] = 1
is F∅-measurable, thus a 6→ a | ∅. ◦
Remark. Readers familiar with (usual) conditional independence will recognize
many aspect in local conditional independence. There are however some differ-
ences. For one, local conditional independence is not (necessarily) symmetric,
as is the case with conditional independence. This is evident from the following
example. ◦

Example 6.2. Let N be a 3-dimensional counting process on R+ with coordi-
nate processes Na, N b, N c, with intensities:

λat = 1Nat =Nct
λbt = 1Nbt<N

a
t

λct = 1Nct<N
b
t
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and initial conditions Na
0 = N b

0 = N c
0 = 0. Think of this as 3 children throwing

a ball between them (in the fixed order a→ b→ c→ a→ . . .), each taking an
exponentially distributed amount of time to pick up the ball, before passing it
on (emitting a point in process a when child a throws the ball).

Intuitively it is clear, that if a knows the last throw of c, any throw of b
is irrelevant for the throw-intensity of a. To b however, the last throw of a is
highly important for the intensity of b. Thus we expect that b 6→ a | a, c and
a→ b | b, c. This would show that local independence is asymmetric in a and b.

And indeed, this is the case since:

λ
a,{a,b,c}
t = E

[
λat | F

{a,b,c}
t

]
= 1Nat =Nct

∈ Fa∪ct

λ
b,{a,b,c}
t = E

[
λbt | F

{a,b,c}
t

]
= 1Nbt<N

a
t

The latter intensity cannot have a Fb∪ct -measurable version, because it depends
on the exponentially distributed throwing time of a, which is independent of
Fb∪ct . ◦

Example 6.3. Consider again the process in the ball-throwing example, Ex-
ample 6.2. We find the local independence graph and check whether the global
Markov property holds with respect to this.

It was verified that b 6→ a | a, c and a → b | b, c. Also one would find
that a→ a | b, c11, which, by symmetry, shows that all the local independences
〈v′, v | V \v′〉 are b 6→ a | a, c; c 6→ b | a, b and a 6→ c | b, c. Thus the graph below
is a local independence graph of N , since these 3 local independence statements
correspond to the 3 edges not present in the graph.

a b

c

We may also check that b ⊥µ a | a, c in the graph. Let p = (b, v2, . . . , vn−1, a)
be any walk, for a contradiction assumed to be µ-connecting given a and c. We
consider the different possibilities of vn−1.

• If vn−1 = a, the walk will end a → a (to obtain a final head at a).
But then vn−1 = a will be a non-collider, but since it intersects with the
conditioning set {a, c}, the walk is non-connecting.

• If vn−1 = b, the walk does not comply with the ’final-head’ requirement.

11Essentially, if child a doesn’t observe itself, it cannot distinguish between the situations

1) ball is at a and 2) ball is at b. This is however very relevant for the intensity λ
a,{a,b,c}
t
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• If vn−1 = c, c will be a non-collider, and again, since it is also in the
conditioning set, the walk cannot be connecting.

In summary, no walk from b to a can be µ-connecting given a, c, and thus
b ⊥µ a | a, c. By symmetry it is clear that also c ⊥µ b | a, b and a ⊥µ c | b, c.
As a matter of fact, these are the only non-trivial (i.e. where neither of the
two separated sets are empty) µ-separations. Since all of these 3 µ-separation
statements are matched by a local independence statement, the global Markov
property holds with respect to this graph. ◦

That the local independences for N satisfies the global Markov property
with respect to it’s local independence graph is not too surprising, since as
mentioned in Section 3.3, (Didelez 2008; Mogensen and Hansen 2018) showed
that under regularity conditions, local independence models always satisfy the
global Markov property with respect to local independence graphs.

Example 6.4. While many point processes will have local independence graphs
with self-loops, this doesn’t need to be the case. Consider the 3-dimensional
Hawkes process N = (Na, N b, N c) on R with intensities:

λat = λ0 +

∫ t−

−∞
exp(−2s)N c(ds)

λbt = λ0 +

∫ t−

−∞
exp(−2s)Na(ds)

λct = λ0 +

∫ t−

−∞
exp(−2s)N b(ds)

To create the local independence graph for this process, we find the local inde-
pendences of a. Since λat is Fct -measurable, b 6→ a | V \{b} and a 6→ a | V \a.
On the other hand however, c → a | V \{c}, because E[λat | FVt ] = λat =∫ t−
−∞ exp(−βas)N c(ds) which is clearly doesn’t have a Fa∪b-measurable version

(even though the intensity of N c
t is Fbt -measurable).

This characterizes all the pairwise local independence statements about a,
and by symmetry, also those of b and c. Hence the local independence graph is:

a b

c

Contrary to Example 6.3, this graph doesn’t contain any self-loops. Note
however that still a is not independent of its past. One would find that a→ a | ∅,
essentially because a high activity in a would stipulate a high activity in b which
again would stipulate a high activity in c, which eventually affects a again. ◦
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7 A Local Empirical Independence Test

In this section we propose a test for local independence based on the results of
Section 5. In Section 7.1 we discuss using tensor basis expansions to fit high-
order kernels. Section 7.2 regards estimating the resulting model by constrained,
penalized maximum likelihood. In Section 7.3 we derive an approximate nor-
mality of maximum likelihood estimates which finally in Section 7.4 we propose
to use for the test of local independence.

7.1 Approximating the intensity

We consider the problem of fitting the intensity λb,Dt = E[λbt | FDt ] for some
mark b and a subset D of the process coordinates. We allow for both the cases
b ∈ D and b /∈ D. The result from Theorem 5.1, which is shown for λ ∈ L1(Ft)
(i.e. the history of all coordinates), is easily extended to subsets D ⊆ V . That

is, λb,Dt can be approximated arbitrarily well by terms:

h0 +

∞∑
n=1

∑
|α|=n
α⊆D

∫ t

−∞
hα(t− s1, . . . , t− sn)Nα(dsn) (9)

with α ⊆ D meaning that every index αi ∈ D. When dealing with actual
data, one is not able to evaluate the above expression. Instead, we make this
expression computable by the following two approximations.

A1: First off, we will truncate the outer sum at some finite step. Truncating
the outer sum for instance at n = 2, amounts to including the effects of
all pairs of events, and we will call this the second order interactions,
since this corresponds to the effect of a pair of size 2 affecting the intensity
of N b (and similar for other orders). This includes both pairs from within
the same mark and with different marks.

A2: Secondly we shall approximate the backward-kernels hα by a tensor spline
expansion as described in Appendix B.2. If |α| = n, that is:

hα(x1, . . . , xn) ≈
d∑

j1=1

· · ·
d∑

jn=1

βαj1,...,jnbj1(x1) · · · bjn(xn)

Here d is the number of basis functions, bj is the j’th basis function in
the basis used and βαj1,...,jn is a parameter. For simplicity, we are assum-
ing that for a fixed n, we use the same spline basis in every coordinate,
although one in principle could use different ones.

For a simpler notation, by stacking the βαj1,...,jn ’s into a vector βα and the

basis functions into a vector Φn(x1, . . . , xn)12, one has

hα(x1, . . . , xn) = (βα)TΦn(x1, . . . , xn)
12Omitting the concrete details of how the entries (bj1 (x1) . . . bjn (xn))j1,...,jn

are to be

sorted into Φ.
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Combining the two approximation, the intensity approximated at degree M
then becomes:

λb,Dt (β) ≈ β0 +

M∑
n=1

∑
|α|=n
α⊆D

∫ t−

−∞
· · ·
∫ t−

−∞

d∑
j1=1

· · ·
d∑

jn=1

βαj1,...,jn

n∏
v=1

bjv (t− sv)Nαv (dsv)

= β0 +

M∑
n=1

∑
|α|=n
α⊆D

∫ t−

−∞
(βα)TΦn(t− s1, . . . , t− sn)Nα(dsn) (10)

Here we are using the same d in all coordinates for simplicity, but other choices
could be relevant - for instance, since the parameter space grows rapidly in
higher dimensions, one could dampen this by using a more narrow basis for
high order interactions.

At first glance, we may still have a practical problem of computing the
integral from −∞. Rather than dealing with this explicitly however, this can
be resolved by adding to A2 the assumptions that the basis functions have a
limited support, corresponding to limiting the memory of the process.

Note that if it is indeed the case that the kernels hα are supported only on
a limited set, the representation Equation (9) becomes exact, i.e. λb,D is indeed
equal to such a term, rather than arbitrarily well approximated since, in the
language of Section 5, λb,D would be a member of L1(Fτ ) for some τ . This is
however mainly an aesthetic pleasure, because for actual computability, we still
need to make approximations A1 and A2.

We shall only consider the case where we truncate the sum M = 2, but the
general case is similar. In that case, A1 and A2 amounts to approximating
λb,Dt by:

λb,Dt (β) = β0 +
∑
v∈D

∫ t−

−∞
(βv)TΦ1(t− s)Nv(ds)

+
∑

v1,v2∈D
v2≥v1

∫ t−

−∞
(βv1v2)TΦ2(t− s1, t− s2)N (v1,v2)(ds2)

Note that in the sum over v2 ∈ D we assume v2 ≥ v1, which is to avoid the
over-parametrization of evaluating the symmetric basis twice. This presumes
that V ⊆ N, which is obviously possible for any finite-dimensional process.

To understand this, suppose that we didn’t include the requirement v2 ≥ v1,
and consider V = {a, b}. Further consider two basis functions, say 1 and 2. Now
the coefficient β1,2

a,b would occur with exactly the same terms as the coefficient

β2,1
b,a , which is an over-parametrization.

Since the above is linear in every βα, and each one appears exactly once, we
can again pull the β’s outside, and stack them into one big vector, such that
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λb,Dt = βTxb,Dt with

xb,Dt =

(
1,[∫ t−

−∞
Φ1(t− s)Nv(ds)

]
v∈D

,[∫ t−

−∞
Φ2(t− s1, t− s2)Nv1,v2(ds2)

]
v1,v2∈D
v2≥v1

)

Computationally it is advantegeous that xb,Dt can be precomputed, and then
used for any value of β.

7.2 Estimating λ through maximum likelihood

In the above, we used a generic choice of β without specifying how this could
be chosen. Of course however, one has to make an intelligent choice of β.

First off, feasibility: Due to the requirement that λb,D ≥ 0 one needs to make
a feasible choice of β. Secondly optimality: One needs to choose β such that
the observed data becomes likely. We do so by constrained, penalized maximum
likelihood.

Feasibility

To comply with the feasibility of β, let [0, T ] be our region of interest, and let

(ti)i=1,...,n be a grid on [0, T ]. We add the constraint λb,Dti ≥ 0 for each grid

point. As discussed above, λb,Dt = βTxb,Dt , is linear in β, and so if X is the

matrix where each row is the evaluated vector xb,Dti , this constraint becomes:

Xβ ≥ 0

which is a linear inequality constraint in β, and which typically can be solved
very quickly.

While this doesn’t guarantee that λb,D will be globally positive, in light of
the smoothness of λb,D, it is unlikely to become substantially smaller than 0.

Optimality

For the maximum likelihood problem, remember from Section 4.6 that the log-
likelihood of a process with intensity λb,D(β) is given by:

logLb,DT (λb,D) =

∫ T

0

log λb,Dt (β)N b(dt)−
∫ T

0

λb,Dt (β)dt

Given an observation, to choose a sensible parameter β for our approximation,
we could choose the one that maximizes this likelihood. As discussed in Ap-
pendix B.3, we risk that very small gains in the optimization target can be
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won only by choosing very large parameters, which produces very non-smooth
kernels. To prevent this, we introduce regularization. Concretely we use the
roughness penalty of Appendix B.3, which penalizes the curvature of βTΦ by a
quadratic form κ(β) = κ0β

TΩβ, where κ0 is a steering parameter. This yields
a penalized maximum likelihood problem.

In terms of β, the likelihood Lb,D of the intensity λb,D(β) reads:

logLb,DT (β) =

∫ T

0

log
(
βTxb,Dt

)
N b(dt)− βT

∫ T

0

xb,Dt dt

As discussed in Proposition 4.23, the maximum likelihood problem is concave
in the likelihood. Since the roughness penalty κ(β) is convex in β, the concavity

is preserved when subtracting a κ(θ), and so maximizing logLb,DT (β)−κ(β) (or

equivalently minimizing − logLb,DT (β)+κ(β)) is a convex optimization problem.

Formally, we denote by β̂D the solution of the constrained, penalized maximum
likelihood problem:

maxβ logLb,DT (β)− κ0β
TΩβ (11)

s.t. Xβ ≥ 0

For concrete methods for solving this for the optimal β, see (Boyd and Vanden-
berghe 2004).

7.3 Distributions of maximum likelihood estimates

Below we will utilize the distribution of β̂, the solution of the penalized maxi-
mum likelihood equation, and so in this section, we derive distributional results
for this (omitting for a while the {b,D}-superscripts for readability).

If λ(β) is a parametrization of intensities for β ∈ Θ, let `T (β) = − logLT (β)
denote the negative log-likelihoods obtained for each β. The maximum likeli-
hood estimates from above can be characterized by the (penalized) maximum
likelihood equations:

Definition 7.1. For a class of point processes parametrized by λ(β), the max-
imum likelihood equation13 is:

−∇`T (β) = 0

13Observe that if the gradient can be moved into the integral, we have:

−∇`T (β) =

∫ T

0
∇ log λt(β)N(dt)−

∫ T

0
∇λt(β)dt

=

∫ T

0
−∇ log λt(β) [N − Λ(β)] (dt)

Noticing how N − Λ(β) resembles a process minus its compensator, this in fact shows that
the maximum likelihood equation fits into the bigger framework of martingale estimation
equations, which we shall not pursue here. See (Hansen 2013) for details.
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Further, if κ(β) is some penalty on β, the penalized maximum likelihood
equation is:

−∇ (`T (β) + κ(β)) = 0

◦

Suppose the true data generating procedure has parameter β0. We define
KT to be the variance matrix of the left hand side of the penalized maximum
likelihood equation,

KT = V
[
−∇ (`T (β0) + κ(β0))

]
= V

[
−∇`T (β0)

]
The penalization term disappears, because this is non-stochastic. Similarly we
may define the information matrix as the mean of the differentiated penalized
maximum likelihood equation:

JT = E
[
−∇2 (`T (β0) + κ(β0))

]
It follows from (Hansen 2013, Propositions 4.5 and 4.7) that in the unpe-

nalized case, the variance and information matrices K and J coincide and are
given by:

Jκ=0
T = Kκ=0

T = E

[∫ T

0

∇λs(β0)∇λs(β0)T

λs(β0)
ds

]
Since KT is anyways independent of κ, Kκ=0

T = KT . And by the linearity of
the mean,

JT = Jκ=0
T −∇2κ(β0) = KT −∇2κ(β0)

In a practical application, we can compute an empirical version of this, using
a solution to the penalized maximum likelihood equation β̂ (i.e. a maximum
likelihood estimate) and by evaluating the concrete realization of λ instead of
taking the mean. That is:

K̂T =

∫ T

0

∇λs(β̂)∇λs(β̂)T

λs(β̂)
ds (12)

and ĴT = K̂T −∇2κ(β̂). Using K and J or their empirical versions, one can now
approximate the distributions of a solution to an penalized maximum likelihood
equation.

(Hansen 2013, Theorem 4.12) shows that a solution β̂ to the penalized
maximum likelihood equation approximately follows a Gaussian distribution
N(µβ̂ ,Σβ̂) with:

µβ̂ = β0 + J−1
T ∇κ(β0)

Σβ̂ = J−1
T KTJ

−1
T
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When β0 is unknown, we may instead compute µ̂β̂ and Σ̂β̂ which uses K̂T ,

ĴT and κ(β̂). Note that from the above, it is evident that the the penalized

maximum likelihood estimate β̂ is biased away from the true mean by the bias
term J−1

T ∇κ(β0).

Likelihood of linear intensities

In the concrete case of λt(β̂) = β̂Txt, we can compute the score and information

matrices above. By differentiating, ∇λs(β̂) = xt, and so:

K̂T =

∫ T

0

xtx
T
t

β̂Txt
dt

which can be estimated numerically.
Further, as suggested above, we use κ(β) = κ0β

TΩβ for some PSD matrix
Ω. Since Ω is symmetric, ∇κ(β) = 2κ0Ωβ and ∇2κ(β) = 2κ0Ω. Hence JT =
KT − 2κ0Ω, and we can compute:

β̂
approx∼ N

(
β0 + 2κ0J

−1
T Ωβ0, J

−1
T KTJ

−1
T

)
D
= N

(
(I + 2κ0J

−1
T Ω)β0, J

−1
T KTJ

−1
T

)
Still we observe the bias 2κ0J

−1
T Ωβ0 to β̂ away from β0 due to the penalization.

In practice this would mean, that if we wanted to perform some test H0 : β0 = c,
we would not know the true mean of our estimator, leaving a test hard to perform
(unless we knew β0, in which case the test is anyways redundant).

Fortunately however, the bias term 2κ0J
−1
T Ω is multiplied onto β0, and so

in the particular case of testing the hypothesis β0 = 0, under the hypothesis,
indeed β̂ has mean 0.

7.4 Testing additive components to 0

We now develop the above into an independence test. First a bit of notation:
For a coordinate v ∈ D, let β̂v be the subvector of β̂D corresponding to the
kernels which describes the first order effect of Nv. Let similarly β̂v1,v2 be pa-
rameters for the second order interactions from (v1, v2).

Given a realization of a point process N on V , our overall interest is to test
whether A 6→ b | C for all b ∈ B and some A,B,C ⊆ V . Remember from
Section 6 that this is the case if each λb,A∪C actually only depends on NC .

In our model, dependence of events of A\C enter the intensity λ̂b,C in Equa-

tion (10) additively through the kernels ΦT1 β̂
v and ΦT2 β̂

v1,v2 for v ∈ A\C and
pairs (v1, v2) where at least one of v1 and v2 are in A\C. (The generic case of

either a first- or second order interaction, we simply denote ΦT β̂α).
So heuristically, if all those ’A\C-related kernels’ are 0, then λb,A∪C doesn’t

depend on the events of NA\C . In that case, still heuristically, λb,A∪C is equal
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to something which depends only on events of NC , i.e. is FC-measurable. This
is the motivation for the following definition:

Definition 7.2. For b ∈ V and A,C ⊆ V let β̂b,A∪C be the solution to the
penalized maximum likelihood problem Equation (11). We say that b is locally
empirically independent of A given C if

ΦT1 β̂
v ≡ 0 ΦT2 β̂

v1,v2 ≡ 0

for each v ∈ A\C and for all (v1, v2) where at least one is in A\C. In this case
we write A 6→λ̂ b | C. Similarly for B ⊆ V , A 6→λ̂ B | C if A 6→λ̂ b | C for every
b ∈ B. ◦

Of course we must specify what we mean by this equivalence to 0 - in par-
ticular, due to noise, we expect fluctuations around the true mean of ΦT β̂α. To
do this, we perform a statistical test for whether equivalence to 0 is likely.

Example 7.3. We first illustrate this with a very simple example of the concept.
Suppose we are given data from the true underlying a graph a → c → b. To
test a 6→λ̂ b | b, c, we fit the Fa,b,c-intensity of N b, λb,a∪b∪c, by a second order
expansion as described above, including the 3 first order effects and the 6 second
order effects of a, b and c (3 pairs with distinct partners, 3 pairs (a, a) etc.). Now
we would conclude that a 6→λ̂ b | b, c if the first-order effect ha and the second

order effects h(a,a), h(a,b), h(a,c) are all found to be insignificant in the fitted
model. ◦

For testing the components ΦT β̂α equal to 0, we follow the methodology by
(Wood 2012) of evaluating ΦT β̂α in a grid G:

Albeit one could test β̂α = 0 directly, this isn’t our preferred approach. For
one, we wouldn’t fully encapsulate the functional structure of ΦT β̂α, since Φ
weights the coefficients differently across the domain. Also, especially in the
case of little curvature on the basis-functions, one could risk parameters that
individually are big but, when weighted with Φ, sum to a function close to 0.

More formally, this is backed up by (Wood 2012), which compares the p-
values from directly testing β = 0 to that of the grid approach, and finds
that when the null hypothesis is indeed true, in the direct test, p-values were
consistently too small, and so one too often rejects the null hypothesis (see
Wood 2012, Fig 2).

Instead (Wood 2012) propose to evaluate Φ in a grid G, and evaluate ΦT β̂α

in each grid point. Since this is just a linear transformation of β̂α, one can
again compute a p-value of the joint distribution using the distribution of β̂α.
Let Φ(G) be the matrix where each column is Φ evaluated in a grid point. Then

ĝα := Φ(G)T β̂α is a vector of ΦT β̂α evaluated in G.

Let µβ̂ and Σβ̂ be the mean and covariance of β̂D found in Section 7.3.

For any α, let µα and Σα be the mean and covariance of β̂α, which is simply
obtainable by subsetting. Then the grid-evaluation ĝα is joint Gaussian with
with mean µgα = Φ(G)Tµα and covariance Σgα = Φ(G)TΣαΦ(G).
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In particular, we can compute a Wald test statistic for the null hypothesis
Φ(G)Tµα = 0 by:

Tα = (ĝα)TΣ−1
gα ĝ

α

= (β̂α)TΦ(G)
[
Φ(G)TΣαΦ(G)

]−1
Φ(G)T β̂α

which is χ2
(1)-distributed under the null hypothesis, and so a statistical test

based on p-values can be performed at a desired level.
In general Σgα can not be expected to be invertible due to the penalization

(As also argued by (Wood 2006, Section 4.8.5): When penalizing heavily with
smoothness penalty, cubic splines become straight lines, which has fewer degrees
of freedom). (Wood 2012) propose to use instead a pseudo-inverse, and devices
how to choose the rank of this (and demonstrates that this approach doesn’t
suffer from the same p-value skew as the direct approach does).

This allows for the following local empirical independence test: To test A 6→λ̂
B | C, for each b ∈ B and each pair v1 ∈ A\C, v2 ∈ A ∪ C, compute the test
statistics14 T v1,b and T (v1,v2),b. If any of these are too large, say beyond the 95%
quantile, reject the hypothesis of local empirical independence. We summarize
the proposed test A 6→ B | C in Algorithm 2.

Algorithm 2 Local Empirical Independence test (LEI, A 6→λ̂ B | C)

Input: Quantile q0 of χ2
(1)-distribution.

Penalty matrix Ω and coefficient κ0

Observation of NA∪B∪C

Independent ← True
for b ∈ B do

Compute the linear coefficients xb,A∪Ct and
∫ T

0
xb,A∪Ct dt

Solve maximization problem:

β̂b,A∪C ← arg max
β

∫ T

0

log(βTxb,A∪Ct )N b(dt)− βT
∫ T

0

xb,A∪Ct dt− κ0β
TΩβ

for v1 ∈ A\C, v2 ∈ A ∪ C do
Compute T v1,b, T (v1,v2),b

if T v1,b > q0 or T (v1,v2),b > q0 then
Independent ← False
Break

return Independent

14In the above we suppressed from notation that this is the test of effects on some b ∈ V .
To avoid ambiguity, we explicitly write Tα,b to denote the effect of α on b.
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8 Computational cost

We consider here the main computational challenge of local empirical indepen-
dence algorithm above: Computing the integrated second order effect to be used
in the likelihood:∫ T

0

xb,D,second order
t dt =

[∫ T

0

∫ t−

−∞
bj1(t− s1)bj2(t− s2)Nv1,v2(ds2)dt

]
j1,j2,v1,v2

The computational challenge is much larger than the entire remainder of the
algorithm, due to the fact that 3 tasks grow quadratically in size:

C1 First off, the number of combinations of processes (v1, v2) grows quadrati-
cally with the dimension.

C2 Secondly, for each (v1, v2), the number of points (s1, s2) to be evaluated in
the inner integral grows quadratically with the number of points in each
coordinate process.

C3 And thirdly, every pair (s1, s2) needs to be evaluated in all combinations of
tensor splines (j1, j2), which grows quadratically in the number of basis
functions.

If |D| is the number of coordinates included, v the average number of points
in one coordinate process and M the number of (1d)-splines used in the tensor
product, the number of evaluations to be made grows as O(|D|2v2M2).

To give an example, in a process with |D| = 3 coordinates, each coordinate
having v = 20 points and approximating the kernels via a tensor basis of d = 3
basis functions tensored with itself means evaluating 32×202×32 = 32.400 com-
binations. But doubling each of these figures, yields 62 × 402 × 62 = 2.073.600
combinations, and so doubling each of the 3 drivers has increased the task by
a factor 26. In both cases, each of these pairs needs to be (numerically) inte-
grated. Naturally, this is a substantial computational challenge, even for small
processes. In this section, we present ways of substantially improving this com-
putational task.

The effect C1 is only truly scaling as |D|
2+|D|
2 , since, as discussed in Sec-

tion 7.1 above, one does not need to evaluate the effect of both (v1, v2) and
(v2, v1). While this is still quadratic, it roughly halves the challenge.

A much larger computational saving can be obtained in C2 by leveraging
basis functions with a limited support. If all the basis function are supported
only on [0, y], then at a given time t, we need only to consider pairs (s1, s2)
where s1, s2 < t and max(t− s1, t− s2) = t−min(s1, s2) < y.

The speed-up from using local basis functions is dependent on the clustering
of the process. In a very explosive process, very little is won. On the contrary, if
points are very uniform on [0, T ], as one would expect of a homogeneous Poisson

process, only a fraction y2

T 2 of the points affect the intensity in any region.

54



0

10

20

30

40

250 500 750 1000 1250

Point count

R
u
n
 t
im

e
 (

s
)

Test order

First order

Second order

Structure

S1

S3

S4i

Figure 7: Runtime of 300 invocations of the local empirical independence test
Algorithm 2. a 6→λ̂ b | b, C was tested 100 times in different structure S1, S3 and
S4i (see the Section 9 for the concrete structures). For each test, we simulate a
Hawkes process (from the same model as in Section 9), and record the number

of points in the process and the runtime of computing
∫ T

0
xb,D,first order
t dt and∫ T

0
xb,D,second order
t dt. The processes are simulated on an interval [0, 1000], and

the test uses splines supported on [0, 20]. As is evident from below, |S1| = 3,
|S3| = 4 and |S4i| = 2.
The run-time is the elapsed time measured in seconds, and so is only useful for
relative reference, since this depends on the machine running the algorithm. The
concrete implementation runs the numerical integration of second order effects
in parallel, and so the actual run-time was sped up by a factor of approximately
the number of CPUs. The fitted line shows the best quadratic fit of the run-time.

Consider for instance the homogeneous Poisson case, with the expected num-
ber of points being v = λT . Without local basis functions, v2 = λ2T 2 pairs have
to be evaluated. But using a basis with support [0, y], approximately we have
to evaluate T

y regions, each region having λy points and so (λy)2 evaluations

per region. In total, the number of evaluations is then λ2yT .
That is, if the number of points v increases due to a longer interval length

[0, T ], the computational cost is linear in T . And while the cost of increasing
the rate is still quadratic, the local case grows slower with a proportionality
constant y

T .

Finally C3 can be addressed. By using a sparse basis in making the tensor
basis, only a small number of the tensor-splines are non-zero in every point. As
found in Appendix B.2, for cubic B-splines in 2 dimensions, in any point in the

space, the proportion of non-zero tensor-splines is only
(

4
K+4

)2

when using a

the tensor-basis made from K + 4 (1-dimensional) B-splines. If correctly imple-
mented, this eradicates the quadratic growth of C3 completely.
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Thus, although the problem grows rapidly, much can be reduced. For a
Poisson process with fixed rate λ on [0, T ], the problem only grows as O(|D|2T )
in |D| and T .

In Figure 7 the run-times of 300 computations of the second order effect are
plotted against the total point count of the process. For comparison, also the
cost of computing the integrated first order effects are plotted. One observes
that indeed the growth looks quadratic in the number of points. And the com-
putational cost of performing the second order integrals is substantially higher
than that of the first (which due to the scaling can barely be distinguished from
0).
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Figure 8: Seven different structures used for testing a 6→ b|b, C, where in in S1
C = {c1}, in S3 C = {c1, c2} and in S2 and S4, C = ∅. Each of the four graphs
in S4 represent a different structure, with S4iv representing the case of no arrow
between a and b.

9 Experimental results

In this section we evaluate the efficiency of the proposed methods. We conduct
3 different experiments to evaluate the performance of the local empirical in-
dependence (LEI) test from Algorithm 2. Section 9.1 evaluates the ability of
the LEI to correctly identify whether a 6→ b|C in various graphical structures
containing a, b and C, and how this depends on the choice of regularization.
Section 9.2 evaluates the performance of the LEI when used as the local inde-
pendence test in Algorithm 1. Section 9.3 discusses the challenges of partially
observed processes, and evaluates the algorithm in this setting, in particular in
contrast to a test using only first order approximations.

In each experiment, given some graph G, we sample a Hawkes process from
an Ogata scheme with intensity:

λvt = α0 +
∑

v∈paG(v)

αe−β(t−s)Nv(ds) (13)

with α0 = 0.1, α = 0.4 and β = 0.8. We simulate the Hawkes processes in an
interval [0, T ] with T = 1000 and a burn-in period of 20.

9.1 Experiment 1: Choice of κ0 and accuracy of test

First we test the accuracy of a single evaluation of the local empirical indepen-
dence test. This is potentially very dependent on the choice of κ0 in the pe-
nalization κ(β) = κ0β

TΩβ, and so we evaluate the accuracy at several choices
of κ0, with the roughness penalty from Appendix B.3. We do so, by fixing a
number of graphical structures, as displayed in Figure 8, for each simulating a
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Figure 9: Boxplots of resulting p-values from each of the 7 structures shown
in Figure 8. From each structure 100 Hawkes process was simulated, and the
local emperical independence test from Algorithm 2 of a 6→λ̂ b|b ∪ C was run.
Each test was run with the roughness penalty at various levels of κ0 (Shown in
color and in the x-axis a log10-scale). Each simulation thus produced a p-value,
which is plotted. The red dotted line shows the 5%-level. Large p-values
indicate that a 6→λ̂ b | b, C while low p-values the opposite.

The header colors show the ground truth of whether a 6→ b | b, C, green
indicating that this is the case. The dark-green line show the fraction of the
simulated p-values falling below a 5%-level. The vertical line is the choice of κ0

used in subsequent experiments.
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Figure 10: Summary of independence hypothesis acceptance rates in Experi-
ment 1 when using κ0 = 1 (Essentially this shows the values of the green line
in Figure 9 at the intersection with the vertical κ0 = 1 lines). The more each
column matches the color of the corresponding header in Figure 9, the better.

58



Hawkes process with this structure and evaluate the accuracy of the indepen-
dence test.

From each structure, we simulate 100 point processes. In each sampled
process we test a 6→λ̂ b|b, C (with C referring to the relevant nodes among c1, c2
in the graph), for each choice of penalization.

We note that the correct theoretical answers are that in S2, S4i and S4ii,
a → b|b, C, whereas in the others, a 6→ b|b, C. Thus a good test provides small
p-values in S2, S4i and S4ii, and large in the 4 other structures.

The resulting p-values of each test are plotted by boxplots in Figure 9 at
each level of κ0. Also the proportion of p-values below 5% are indicated by the
green lines.

We observe that identification of true local independences in S1 and S3 is
very stable, with consistently very large p-values. Also S4ii and S4iv also have
low p-values, although at some levels of κ0, more than 5% are rejected. In the
negative cases S2, S4i and S4ii, we observe that for either extremely large or
extremely small penalizations, the independence hypothesis is way too often
accepted. The best levels at κ0 are those in the range from 1 to 10.

In the following experiment, we evaluate κ0 = 1 (marked in vertical lines in
Figure 9). Figure 10 shows a basic zoom-in of the results for κ0 = 1. While
κ0 = 1 is best at identifying the true local dependence in S2, S4i and S4ii, it is
also likely to make more false negatives in the local independence tests in S4iii
and S4iv. Had one for instance used κ0 = 100 on the instead, more often one
would conclude local empirical independence, and so more aggressively remove
edges.

In general we note that there is some evidence that the approximate normal
distribution of β̂b,D is not very fitting - in particular, although it is of course
nice to identify the local independences of S1 and S3 in 100% of the cases, from
a theoretical point of view, one would expect to reject these 5% of the time.
Similarly, S4iii and S4iv are accepted too seldomly, if we had indeed used the
correct distribution of β̂b,D.

9.2 Experiment 2: Performance in the Empirical Causal
Analysis algorithm

In this experiment, we evaluate the local empirical independence test in the
context of the ECA presented in Algorithm 1.

For each d ∈ {2, 3, 4, 5, 6} we draw 100 random graphs on V = {1, . . . , d} by
letting self-edges v → v appear with probability p0 = 0.7 and all other edges
with probability p1 = 0.1, where occurrence of all edges are drawn indepen-
dently (the d = 2 case is run by p0 = 0.8, p1 = 0.4, to avoid too sparse graphs).
To avoid explosivity, each graph is discarded, if more than 8 edges are present.
Given the graph, we simulate a process from the same intensity as above in
Equation (13), on [0, T ] with T = 1000 and a burn-in of 20. Based on the
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Figure 11: Structural Hamming Distances of graphs estimated using the ECA-
algorithm with the developed local independence test. For each dimension in
{2, . . . , 6}, a 100 random graphs were simulated, and a Hawkes process simu-
lated, with parents dictated by the graph. The ECA-algorithm was run twice,
once with the developed test, and a baseline ECA-algorithm where every test
A 6→ B|C is accepted with probability 1

2 . Boxplots of both baseline and esti-
mated SHD are shown. Further the blue points show the distribution of the
estimated SHDs.

results above, we use κ0 = 1 for the local independence test.

For each simulated graph, we then run the ECA algorithm, and compare the
resulting graph with the true graph used for generation. Running a PC-type
algorithm, like the ECA, is known to involve substantial uncertainty. Although,
under faithfulness assumptions, an oracle conditional independence test is guar-
anteed to produce the true graph, a test with uncertainty may not do so. Fur-
ther, decisions on whether or not to remove edges, affect later decisions, and
so once an error is made, this is likely to generate further errors through the
algorithm.

So, as a baseline, on each simulated point process, we also run the conditional
independence test, which chooses with equal probability between a positive and
a negative answer. We compare the resulting graphs to the true graph using
the Structural Hamming Distance:

Definition 9.1. For two graphs G1 = (V,E1),G2 = (V,E2), the Structural
Hamming Distance (SHD) is the minimal number15 of edge flips, creations
or deletions one needs to make in G1 to obtain G2.

A large SHD indicates that two graphs are very different, while a small SHD

15Given two edge sets, E1 and E2, one can compute the SHD by letting

B = {(i, j) ∈ E14E2 | (j, i) ∈ E14E2, {(i, j), (j, i)} 6⊆ E1, E2}

and A = (E14E2)\B, where 4 denotes the symmetric difference. Now SHD(G1,G2) =

|A|+ |B|
2

.

60



that they are similar. ◦

Results are plotted in Figure 11. In Figure 11a the SHD is shown for each of
the simulated dimensions, and the graphs estimated from the algorithm perform
substantially better than the baseline for all dimensions. For instance, in a
process of dimension 5, the median SHD is 3, while the baseline test had a
median SHD of 7.

In Figure 11b the SHD is shown for the number of edges in the true graph,
and also here the algorithm performs substantially better than baseline. In
particular, the growth of the SHD with the number of edges in the simulated
graph is much slower for the estimated graph.

9.3 Experiment 3: The latent case

0 1 2

2 3 4 5 2 3 4 5 2 3 4 5
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6
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Observed nodes

S
H

D

Algorithm

Second Order SHD

First Order SHD

Figure 12: Structural Hamming Distances of graphs estimated using the ECA-
algorithm with a first- and second-order local empirical independence test (sec-
ond being the standard one, used above). Each of the boxes 0, 1 and 2 indicate
the number |V \O| of latent variables. The lines represent the average SHD
within each group.

We first give a little bit of motivation for this last experiment. In the above,
we have tested the ECA algorithm in the case of a fully observed processes,
using the local empirical independence test based on a second order expansion.

By now the reader may be wondering: If our interest is primarily in the
Hawkes process, which is governed by first-order effects only, why even bothering
including higher order interactions (and doing all the tedious work in Section 5)?

The reason is that Hawkes processes are not closed under marginalizations.
That is, if N = (N1, . . . , Nd) is a Hawkes process, there is no guarantee that
a NO = (No1 , . . . , Nom) is a Hawkes process for a subset O = {o1, . . . , om} ⊆
{1, . . . , d}.

This is problematic for two reasons. First, if one observes only a subset
O ⊆ V of the process coordinates, since NO is not necessarily Hawkes, one is not
guaranteed that the system can be described by first order interactions. However
by the results of Section 5, no matter the class of the marginalized process,
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one can approximate it arbitrarily well, by including higher and higher order
interactions. Concretely, in our test, we hope that the ’non-Hawkes’ behaviour
of marginalized models can be encaptured as second order interactions.

Secondly, even in a fully observed process, when one performs a local inde-
pendence test a 6→ b|C, although the entire process may be a Hawkes process,
the process Na,b,C need not to be, and so the local independence test cannot as-
sume that only first-order interactions are present between coordinates a, b and
C. As detailed in Section 8, the computational complexity grows quadratically
with the number of included processes, and so from a computational perspective,
it is very beneficial to have algorithms that remove as many edges as possible
with tests a 6→ b|C where C is small. Hence the need for at test which can
handle Na,b,C which is not Hawkes.

In this experiment, we seek to test the robustness of the method in the face
of latent coordinates. If G = (V,E) is the graph of the full system, and O ⊆ V
are observed coordinates, (Mogensen 2019) show that Algorithm 1 will produce
a supergraph GCA of the parent graph PO(G). We say that PO(G) = (O,F ) is a
parent graph of G on O if F contains edge an edge α→ β if 1) α→ β in E or
2) there exist latent nodes l1, . . . , ln ∈ V \O such that α → l1 . . . → ln → β in
E. Consequently, the central property of parent graphs is that AnPO(G)(β) =
AnG(β) ∩O for every β ∈ O.

And so, while we do not identify the true graph G, the parent graph tells us
that if a /∈ AnPO(G)(b), then a is not a causal ancestor of b in G.

To test the local independence test under latent coordinates, for each |O| ∈
{2, 3, 4, 5} and each |V \O| ∈ {0, 1, 2} we simulate 30 graphs G of size |O|+|V \O|,
by including all self-loops and a 15% probability for every non-diagonal edge to
appear. We run Algorithm 1 using the standard second order LEI. Further, we
run Algorithm 1 using also the LEI, but where we fit only the first order effects
(which was tuned for κ0 similar to Experiment 1).

For each resulting graph, G, we measure structural hamming distance to the
ground truth G0

16, the results being shown in Figure 12.
We observe that a substantial benefit is earned by including the second order

effects. The difference does not seem to increase much with more truly latent
coordinates. This could however just be due to the fact that coordinates not in
a, b, C appear as latent when testing a 6→λ̂ b | C, also in the fully observed case.

16Due to Markov equivalences arising in marginalized graphs, we do not use the parent
graph PO(G) but rather the parent graph of the maximal element of the markov equivalence
class. See (Mogensen 2019) for details.
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10 Discussion

In this thesis, we have studied local independence of point processes, and how
local independence, through the global Markov property, can be studied in the
context of graphs and graph separation.

Further we have proven that point process intensities can be approximated
arbitrarily well by considering increasing orders of integrals of kernels, a result
similar in nature to that of Volterra series.

We have proposed to use this approximation in a non-parametric test for lo-
cal independence, which uses basis splines to approximate kernels. We estimate
the intensity using penalized maximum likelihood, and we derive distributional
results, such that the test relies on the approximate normality of the estimated
parameter β̂b,D. Using this, we test for local empirical independence by testing
for insignificance of a collection of kernels.

We have discussed the quadratic growth of the complexity, in particular that
while this cannot be alleviated in the number of coordinates, by using limited
memories of the kernels, this can in some cases be reduced to linear growth in
the number of points.

Finally, we have evaluated the performance of the algorithm in simulated
data sets. We examined the consistency of the test and found that in case the
underlying processes are truly local independent, there is some evidence that the
distributional approximations is not perfectly describing the actual distribution,
with acceptance rates both below and above the desired level, depending on the
tested structure. Further, in the structures where the underlying processes is
not locally independent, we still accept the independence hypothesis in a large
number of cases. It is very possible that further work could improve on this lack
of strength, for instance by choosing alternative regularizations, which considers
the size of the tested structure, or by finding ways of improving the model fit.
It may however also be, that in the concrete settings used for experiments, the
local independence is so hard to identify that not much can be gained from
improving the fit. Nonetheless, we also find that when applying the test in
structure learning algorithms, the simulations show very promising results.

The proposed test contributes to the literature on causal structure learning
in dynamical systems by providing a non-parametric test which is able to handle
latent factors in a computationally feasible manner.
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A Enumerations and integrals

In this appendix we show that point processes can be characterized by their
jumps. Further, we discuss integration with respect to a point process.

As a motivation, consider Figure 4, where the process obtained by evaluating
t 7→ N(0, t] would have discontinuities at a number of points Tn. This sparks
the idea that in the plotted region, N = δT1

+ δT2
+ δT3

. The below guarantee
that this construction is always possible.

Considering any fixed element µ ∈ N#
X (i.e. in the non-random case), µ

decomposes as a countable sum of Dirac measures: µ is a finite sum of Dirac
measures on any bounded set17, and by separability, X is a countable union of
bounded sets. Hence µ =

∑
i∈N δti for some (ti)i∈N ⊆ X .

Actually this is a little inaccurate, because of course µ could be finite, and
so this sum should be finite. Since it however is more convenient to always
have an infinite sum, one could make some extension of X to X̄ , and exclude
the surplus summands by letting ti ∈ X̄ , ensuring that

∑
i∈N δti(A) is a correct

representation of µ for all A ∈ B(X ). The obvious motivation for doing so is
the case of X = R, with X̄ = R ∪ {−∞,∞} - ’events ti that doesn’t occur will
put at ±∞’.

Now if we don’t consider a fixed element µ ∈ N#
X , but rather a probability

distribution over N#
X (i.e. a point process), we can obtain a similar result:

Proposition A.1. For a given point process N on X there exists a sequence
T1, T2, . . . of random variables on X̄ such that for any set B ∈ B(X ) and ω ∈ Ω,
one has:

Nω(A) =
∑
i∈N

δTi(ω)(A)

Proof. This follows from the arguments preceding (Daley and Vere-Jones 2007,
Lemma 9.1.XIII).

We call the sequence T1, T2, . . . an enumeration of N , or less formally the
points, jumps or events of N .

In the case of X = R, we will often enumerate this sequence by Z instead of
N and ensure that the events are ordered, i.e. i < j =⇒ Ti ≤ Tj . This can for
instance be done by letting:

Ti =

{
inf{t > 0|N(0, t] ≥ i} i ≥ 1

sup{t ≤ 0|N(t, 0] > −i} i ≤ 0

with the conventions that inf(∅) = ∞, sup(∅) = −∞. The assumption that
a process is simple is equivalent to the assumption that almost surely the (fi-
nite) Ti’s are distinct. With a representation as a sum of Dirac measures, the
definition of integrals with respect to point processes are straightforward:

17This is not trivial, but follows by the assumption that X is complete and separable. See
(Daley and Vere-Jones 2003, Appendix 1.6) for details.
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Definition A.2. Let f+ : X → R be a positive measurable function. Define
by
∫
X f

+(t)N(dt) the (not-necessarily finite-valued) random variable obtained
by for each ω ∈ Ω integrating f+ with respect to the measure Nω.

If f : X → R is any measurable function, and P
(∫
X |f |(t)N(dt) <∞

)
= 1, we

define the (a.s. finite-valued) integral
∫
X f(t)N(dt) similarly. ◦

Since integration with respect to a Dirac measure simply means plugging
in, i.e.

∫
X f(t)δx(dt) = f(x), it follows that

∫
A
f(t)N(dt) =

∑
i:Ti∈A f(Ti) for

integrable f .

B Tensor splines

In this appendix we introduce B-splines, and discuss how one splines in one
variable can be extended to splines of multiple variables. We also discuss the
roughness penalty, a way of biasing estimates towards smoother functions.

To approximate the kernels we use a basis expansion of tensor splines. A
major advantage of using a spline expansion is the fact that most oftenly, one
uses an additive decomposition β1B1(x) + . . . + βnBn(x), which is linear in
the parameter β. We stack the basis functions into a vector function Φ(x) =
(B1(x), . . . , Bn(x)) and thus a linear combination of basis functions is written
as βTΦ. For ease of notation, below we do this also in the case of tensor bases,
even though the vector ordering is not as obvious in this case.

B.1 B-splines in one dimension

One such basis spline are the B-splines. They’re constructed by functions that
are piecewise polynomial, with the pieces defined on regions that overlap at
’knots’, and with continuity assumptions at the boundary on the function and
derivatives.

Concretely, one defines a B-spline on an interval [ξ0, ξK+1] from it’s knots
(ξi)i=0,...,K+1, and it’s order M . A order M -spline consists of polynomials of
order M−1 and has continuous derivatives up to order M−2, the most frequent
case being M = 4, which is known as cubic splines. Following (Friedman et al.
2001) we let:

τ1 = . . . = τM =ξ0

τM+1 = ξ1, . . . , τM+K =ξK

τM+K+1 = . . . = τM+K+K =ξK+1

and define recursively the functions:

Bi,1(x) = 1[τi,τi+1)(x)

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x
τi+m − τi+1

Bi+1,m−1(x)
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Figure 13: Plot of B-splines with order M = 4 and internal knots 0.1, . . . , 0.9.
In total there are K +M = 13 functions.

for i = 1, . . . ,K + 2M −m and m up to order M . Also, while zero-division is
possible if τi+m−1 = τi this only occurs if also the denominator Bi,m−1 ≡ 0, so
we adopt the convention that in this case, the result is zero.

Now the functions Bi,M , 1 ≤ i ≤ K + M constitute what is referred to as
the B-splines of order M . The case of M = 4 and K = 9 with ξi = i

10 for
i = 0, . . . , 10 is shown in Figure 13.

Once a basis Φ = (B1,M , . . . , BK+M,M ) is chosen, one can now consider the
function space spanned by linear combinations βTΦ for β ∈ RK+M , all of which
also have continuous derivatives up to order M − 2.

An important feature of the B-splines is the fact that each spline is supported
only on a set of M intervals between M + 1 knots (splines near the boundary
on even fewer). This is clear for the first order splines, since they’re simply
indicator functions on one interval, and since higher-order splines are sums of
adjacent lower-order splines, this is true for all orders. That implies that for
any x, at most M splines will be non-zero when evaluated in x. For instance in
Figure 13, for any x ∈ [0, 1], at most 4 of the 13 spline-functions is non-zero in
x.

The fact that B-splines are locally supported is a very important computa-
tional feature, since this will produce sparse representations, with a ’degree-of-
sparsity’ of K

K+M . As we shall see below, upon considering tensor-splines, this
sparseness is only fortified in higher dimensions.

B.2 Tensor splines

How can we generalize basis expansions to higher dimensions? One way to do
so is via tensor splines. For instance in the two dimensional case, let Φ1 =
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Figure 14: Plot of the tensor spline basis made from 3 B-spline basis functions
tensored with themselves. Note how the plots are mirrored through the diagonal.

(B1
1 , . . . , B

1
m1

) and Φ2 = (B2
1 , . . . , B

2
m2

) be two basis expansions on the intervals
[a1, b1] respectively [a2, b2]. Now define a basis expansion Φ = (Bi,j)i≤m1,j≤m2

on [a1, b1]× [a2, b2] by the functions:

Bi,j(x, y) = B1
i (x)B2

j (y)

I.e., in vector form, Φ consists of the entries of the outer product Φ1ΦT2 . In
dimensions higher than 2, one proceeds similarly. See (Wood 2006, Section 5.6)
for further details.

Example B.1. We consider in particular the d-dimensional case on an interval
[a, b]d, in each coordinate using the same cubic B-splines with K internal knots
(and so K + 4 basis functions).

The size of the basis grows exponentially as (K + 4)d in the dimension.
However, since for any x ∈ [a, b]d, at most 4 basis functions are active in each
coordinate, only 4d basis functions are non-zero, which also grows exponentially

but at a much slower rate. Thus the sparseness of the basis is 1−
(

4
K+4

)d
.

If for instance d = 2 and K = 10, the dimension of the parameter space
becomes 196, but in any point in the region, only 16 functions are active. ◦

B.3 Regularization of splines

The function space spanned by a spline basis is very rich, especially when in-
cluding many basis functions. When optimizing some functional of βTΦ over
β, one risks that the optimization produces parameters β such that βTΦ be-
have very ’wiggly’, to be able to fit the optimization target a little bit better.
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To dampen this, one can add some regularization κ(β), to avoid the resulting
estimate behaving too wildly.

For our purposes we choose the roughness penalty, cf. (Friedman et al. 2001),
which penalizes curvature of βTΦ. In a d-dimensional tensor spline, we let Φ(x)
be shorthand for the vector form Φ(x1, . . . , xd). For each pair of coordinates

(i, j), we square the curvature ∂2

∂xixj
βTΦ(x), and sum this up. This we integrate

over our area of interest [a, b]d. Finally, we scale the penalty with some constant
κ0, which steers our prior belief on the smoothness of the estimate. That is:

κ(β) = κ0

∫
[a,b]d

d∑
i,j

(
∂2

∂xixj
βTΦ(x)

)2

dx

= κ0

∫
[a,b]d

d∑
i,j

(
βT

∂2

∂xixj
Φ(x)

)(
βT

∂2

∂xixj
Φ(x)

)T
dx

= κ0β
T

∫
[a,b]d

d∑
i,j

(
∂2

∂xixj
Φ(x)

)(
∂2

∂xixj
Φ(x)

)T
dx︸ ︷︷ ︸

:=Ω

β

= κ0β
TΩβ

where when pulling β outside of the integral, we consider the entry-wise integral
of the matrix. Thus we see that the penalty is just a quadratic form in β.

Note the similarity to having chosen simply a L2 penalty, which would cor-
respond to the choice of Ω = I.

C Implementing integration of 2nd order effects

This appendix adds technical details to the computational analysis of Section 8.
When computing the second order integrals, it can be beneficial for imple-

mentation purposes to switch orders of integration, such that the time integral
is evaluated first.

That is:∫ T

0

∫ t−

−∞
bj1(t− s1)bj2(t− s2)Nv1,v2(ds2) dt =

∫ T

−∞

∫ T

(0∨s1∨s2)+

bj1(t− s1)bj2(t− s2)dtNv1,v2(ds2)

Where we maintain the notation of collapsing the double integral wrt. N into
one. This form is simple for implementation purposes: For each pair of events,
one should compute the inner integral, and sum all those computed values to-
gether.

If one chooses a kernel with bounded support, say on an interval [0, y], the

outer integrals
∫ T
−∞ · · ·N

v(dt) can be reduced to
∫ T
−y · · ·N

v(dt), because for

s < −y, one has t− s > y when t ∈ (0 ∨ s1 ∨ s2)+.
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Further, the upper limit of the integral can be reduced to T ∧ ([s1 ∧ s2] + y),
because for t > y + [s1 ∧ s2] either t− s1 > y or t− s2 > y, and so either bj1 or
bj2 is off it’s support. In conclusion one needs to compute:∫ T

−y

∫ T∧([s1∧s2]+y)

(0∨s1∨s2)+

bj1(t− s1)bj2(t− s2)dtNv1,v2(ds2)

This allows for a straight-forward implementation: One loops over pairs
(s1, s2), and if |s1− s2| < y, one computes the inner integral, and adds it to the
total output sum.
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